首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   6篇
大气科学   2篇
地球物理   43篇
地质学   13篇
海洋学   56篇
天文学   12篇
综合类   1篇
自然地理   7篇
  2023年   2篇
  2021年   1篇
  2019年   1篇
  2018年   4篇
  2017年   5篇
  2016年   12篇
  2015年   4篇
  2014年   7篇
  2013年   5篇
  2012年   1篇
  2011年   4篇
  2010年   9篇
  2009年   13篇
  2008年   8篇
  2007年   2篇
  2006年   7篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1989年   1篇
  1988年   3篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有134条查询结果,搜索用时 625 毫秒
21.
We deployed a profiling buoy system incorporating a fast repetition rate fluorometer in the western subarctic Pacific and carried out time-series observations of phytoplankton productivity from 9 June to 15 July 2006. The chlorophyll a (Chl a) biomass integrated over the euphotic layer was as high as 45–50 mg Chl a m−2 in the middle of June and remained in the 30–40 mg Chl a m−2 range during the rest of observation period; day-to-day variation in Chl a biomass was relatively small. The daily net primary productivity integrated over the euphotic layer ranged from 144 to 919 mg C m−2 day−1 and varied greatly, depending more on insolation rather than Chl a biomass. In addition, we found that part of primary production was exported to a 150-m depth within 2 days, indicating that the variations in primary productivity quickly influenced the organic carbon flux from the upper ocean. Our results suggest that the short-term variability in primary productivity is one of the key factors controlling the carbon cycle in the surface ocean in the western subarctic Pacific.  相似文献   
22.
Hydrographic and biogeochemical observations were conducted along the longitudinal section from Ise Bay to the continental margin (southern coast of Japan) to investigate changes according to the Kuroshio path variations during the summer. The strength of the uplift of the cold deep water was influenced by the surface intrusion of the Kuroshio water to the shelf region. When the intrusion of the Kuroshio surface water to the shelf region was weak in 2006, the cold and NO3-rich shelf water intruded into the bottom layer in the bay from the shelf. This bottom intrusion was intensified by the large river discharge. The nitrogen isotope ratio (δ15N) of NO3 (4–5‰) in the bottom bay water was same as that in the deeper NO3 over the shelf, indicating the supply of new nitrogen to the bay. The warm and NO3-poor shelf water intruded into the middle layer via the mixing region at the bay mouth when the Kuroshio water distributed in the coastal areas off Ise Bay in 2005. The regenerated NO3 with isotopically light nitrogen (δ15N=−1‰) was supplied from the shelf to the bay. This NO3 is regenerated by the nitrification in the upper layer over the shelf. The contribution rate of regenerated NO3 over the shelf to the total NO3 in the subsurface chlorophyll maximum layer in the bay was estimated at 56% by a two-source mixing model coupled with the Rayleigh equation.  相似文献   
23.
The general-relativistic equations of hydrodynamics for a nonideal fluid are derived in the modified Lagrangian form. Together with the zeroth and first moment equations of radiative transfer derived by Morita and Kaneko (1986), the equations provide a complete set of the modified Lagrangian equations of radiation hydrodynamics. The equations of hydrodynamics are specialized for a thermally conducting, Newtonian viscous fluid in the modified Lagrangian form, which are the generalization of the specialrelativistic equations of hydrodynamics derived by Greenberg (1975).  相似文献   
24.
In low-lying areas of urban and suburban regions in Asia, the use of landfill has allowed urban land use to encroach onto watery landforms, such as back marshes, which were formerly used as rice fields. To improve understanding of the associations between land-use patterns and landfill development, we carried out a case study in the urban fringe of Metro Manila in the Philippines. We examined landfill volume derived from land-use change using GIS, and field surveyed qualitative aspects of the landfill used. We calculated the rate of application of landfill in low-lying housing development areas to be 5.0 × 10m3 km?2 year?1, most of which consisted of offsite disposal of construction waste or crushed rock produced by urban development and renewal on the adjoining uplands. The flow of fill material from offsite sources to onsite landfill development areas was on the basis of individual agreements between suppliers and developers.  相似文献   
25.
26.
Seasonal changes in mesozooplankton biomass and their community structures were observed at time-series stations K2 (subarctic) and S1 (subtropical) in the western North Pacific Ocean. At K2, the maximum biomass was observed during the spring when primary productivity was still low. The annual mean biomasses in the euphotic and 200- to 1000-m layers were 1.39 (day) and 2.49 (night) g C m?2 and 4.00 (day) and 3.63 (night) g C m?2, respectively. Mesozooplankton vertical distribution was bimodal and mesopelagic peak was observed in a 200- to 300-m layer; it mainly comprised dormant copepods. Copepods predominated in most sampling layers, but euphausiids were dominant at the surface during the night. At S1, the maximum biomass was observed during the spring and the peak timing of biomass followed those of chlorophyll a and primary productivity. The annual mean biomasses in the euphotic and 200- to 1000-m layers were 0.10 (day) and 0.21 (night) g C m?2 and 0.47 (day) and 0.26 (night) g C m?2, respectively. Copepods were dominant in most sampling layers, but their mean proportion was lower than that in K2. Mesozooplankton community characteristics at both sites were compared with those at other time-series stations in the North Pacific and with each other. The annual mean primary productivities and sinking POC fluxes were equivalent at both sites; however, mesozooplankton biomasses were higher at K2 than at S1. The difference of biomasses was probably caused by differences of individual carbon losses, population turnover rates, and trophic structures of communities between the two sites.  相似文献   
27.
28.
During a cruise aboard the R/V Hakuho-maru in the northwestern North Pacific in the summer of 1998 the particle number concentrations and the major ionic components of size fractionated aerosols were measured to investigate the aerosol produced by marine biological activity. Continuous low concentrations of nitrate (<1.8 nmol m−3), similar to the marine air background level, were found over the northwestern North Pacific (40–45°N) and the Sea of Okhotsk (44–45°N). Over the Sea of Okhotsk, a high concentration of chlorophyll-a (5.4 mg m−3) in seawater was observed, and atmospheric concentrations of non sea-salt (nss-) sulfate (44 nmol m−3), methane sulfonic acid (MSA) (1.8 nmol m−3) and particle number in the size range of 0.1 < D < 0.5 μm (199 cm−3) were found to be 9, 7, and 2 times, respectively, higher than those in the background marine air. The increase in particle number concentrations mainly in the size range of 0.2 < D < 0.3 μm was likely caused by the increase of biogenic sulfate over the high productive region of the Sea of Okhotsk. In humid air conditions (R.H. > 96%), the increased biogenic sulfate that condensed the large amount of water vapor would not have sufficient solute mass to activate as cloud condensation nuclei (CNN) and would remain as aerosol particles in the marine air with frequent sea-fogs over the high productive region. Biogenic sulfate originating from dimethyl sulfide (DMS) would gradually grow into the CCN size and continuously supply a great number of CCN to the marine air in the northwestern North Pacific. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
29.
Biological and physical surveys were conducted in order to investigate the relationship between environmental conditions and the distribution of moon jellyfish Aurelia aurita in Hiroshima Bay, western Seto Inland Sea, Japan. Moon jellyfish and ichthyoplankton were collected at 13 stations in Hiroshima Bay during monthly surveys from July to September in 2006 and 2007. Surface temperature in 2006 was significantly lower during the August and September cruises and surface salinity was lower during all cruises than in 2007. Moon jellyfish was the most dominant gelatinous plankton collected, accounting for 89.7% in wet weight. Mean moon jellyfish abundance in 2006 was higher than that in 2007 from July through September, with significant inter-year differences for July and September. Variability in precipitation and nutritional input from the Ohta River, northernmost part of Hiroshima Bay, were suggested as possible factors affecting the inter-annual variability in moon jellyfish abundance in the coastal areas of northern Hiroshima Bay. Moon jellyfish were more abundant in the coastal areas of northern Hiroshima Bay, where the dissolved oxygen (DO) concentration was lower, while low in the central part of the bay. Japanese anchovy Engraulis japonicus eggs were most dominant (58.1% in number) among the ichthyoplankton and were abundant in the central area of Hiroshima Bay. Explanatory analysis was conducted to detect possible effects of environmental conditions on the abundance of moon jellyfish and Japanese anchovy eggs during the summer months in Hiroshima Bay. Of the environmental conditions tested (temperature, salinity and DO of surface and bottom layers at each sampling station), bottom DO had the most significant effect on the moon jellyfish abundance: there was a negative correlation between the bottom DO and the moon jellyfish abundance in Hiroshima Bay during summer.  相似文献   
30.
The peak dynamic responses of two mathematical models of a fifteen-storey steel moment resisting frame building subjected to three earthquake excitations are computed by the response spectrum and time history methods. The models examined are: a ‘regular’ building in which the centres of stiffness and mass are coincident resulting in uncoupled modes with well-separated periods in each component direction of response; and an ‘irregular’ building with the mass offset from the stiffness centre of the building causing coupled modes with the translational modes having closely spaced periods. Four response spectrum modal combination rules are discussed and are used to predict the peak responses: (1) the square root of the sum of the squares (SRSS) method; (2) the double sum combination (DSC) method; (3) the complete quadratic combination (CQC) method; and (4) the absolute sum (ABS) method. The response spectrum results are compared to the corresponding peak time history values to evaluate the accuracy of the different combination rules. The DSC and the CQC methods provide good peak response estimates for both the regular and irregular building models. The SRSS method provides good peak response estimates for the regular building, but yields significant errors in the irregular building response estimates. The poor accuracy in the irregular building results is attributable to the effects of coupled modes with closely spaced periods. It is concluded that the DSC and CQC methods produce response estimates of equivalent accuracy. Both methods are recommended for general use. In addition to the DSC and CQC rules, the SRSS method is recommended for systems where coupled modes with closely spaced periods do not dominate the response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号