首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72196篇
  免费   1160篇
  国内免费   673篇
测绘学   1733篇
大气科学   5120篇
地球物理   14464篇
地质学   25506篇
海洋学   6270篇
天文学   16487篇
综合类   215篇
自然地理   4234篇
  2022年   400篇
  2021年   717篇
  2020年   791篇
  2019年   841篇
  2018年   1916篇
  2017年   1774篇
  2016年   2262篇
  2015年   1335篇
  2014年   2205篇
  2013年   3821篇
  2012年   2306篇
  2011年   3153篇
  2010年   2639篇
  2009年   3553篇
  2008年   3293篇
  2007年   3084篇
  2006年   2905篇
  2005年   2384篇
  2004年   2274篇
  2003年   2137篇
  2002年   1945篇
  2001年   1828篇
  2000年   1743篇
  1999年   1397篇
  1998年   1483篇
  1997年   1400篇
  1996年   1107篇
  1995年   1150篇
  1994年   976篇
  1993年   890篇
  1992年   864篇
  1991年   771篇
  1990年   868篇
  1989年   730篇
  1988年   653篇
  1987年   827篇
  1986年   668篇
  1985年   872篇
  1984年   936篇
  1983年   883篇
  1982年   857篇
  1981年   725篇
  1980年   681篇
  1979年   621篇
  1978年   620篇
  1977年   565篇
  1976年   551篇
  1975年   509篇
  1974年   521篇
  1973年   482篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Natural Hazards - Geotechnical investigation of natural slopes is challengeable especially when natural slopes having higher gradients and access is difficult. Also, it is even more problematic to...  相似文献   
992.
The southeastern Brazilian margin presents post‐breakup Cenozoic tectonism that created a series of grabens and small sedimentary basins, known as the Continental Rift of Southeastern Brazil. The formation of this rift occurred long after the South Atlantic ocean opening and has been attributed to different mechanisms like regional uplift induced by hotspot activity, pulses of Andean orogeny and reactivation of pre‐existing faults. However, the proposed models lack an analytical or numerical verification from a geodynamic point of view. Based on finite element modelling of the lithospheric stress field evolution we conclude that a shallow necking depth, consistent with the hyperextended southeastern Brazilian margin, combined with differential denudation of the continent, resulted in an extensional stress field in the upper crust that induced the observed Cenozoic tectonism.  相似文献   
993.
The Tombador Formation exhibits depositional sequence boundaries placed at the base of extensive amalgamated fluvial sand sheets or at the base of alluvial fan conglomeratic successions that indicate basinward shifts of facies. The hierarchy system that applies to the Tombador Formation includes sequences of different orders, which are defined as follows: sequences associated with a particular tectonic setting are designated as ‘first order’ and are separated by first‐order sequence boundaries where changes in the tectonic setting are recorded; second‐order sequences represent the major subdivisions of a first‐order sequence and reflect cycles of change in stratal stacking pattern observed at 102 m scales (i.e., 200–300 m); changes in stratal stacking pattern at 101 m scales indicate third‐order sequences (i.e., 40–70 m); and changes in stratal stacking pattern at 100 m scales are assigned to the fourth order (i.e., 8–12 m). Changes in palaeogeography due to relative sea level changes are recorded at all hierarchical levels, with a magnitude that increases with the hierarchical rank. Thus, the Tombador Formation corresponds to one‐first‐order sequence, representing a distinct intracratonic sag basin fill in the polycyclic history of the Espinhaço Supergroup in Chapada Diamantina Basin. An angular unconformity separates fluvial‐estuarine to alluvial fan deposits and marks the second‐order boundary. Below the angular unconformity the third‐order sequences record fluvial to estuarine deposition. In contrast, above the angular unconformity these sequences exhibit continental alluvial successions composed conglomerates overlain by fluvial and eolian strata. Fourth‐order sequences are recognized within third‐order transgressive systems tract, and they exhibit distinct facies associations depending on their occurrence at estuarine or fluvial domains. At the estuarine domain, they are composed of tidal channel, tidal bar and overlying shoreface heterolithic strata. At the fluvial domain the sequences are formed of fluvial deposits bounded by fine‐grained or tidal influenced intervals. Fine grained intervals are the most reliable to map in fourth‐order sequences because of their broad laterally extensive sheet‐like external geometry. Therefore, they constitute fourth‐order sequence boundaries that, at the reservoir approach, constitute the most important horizontal heterogeneity and, hence, the preferable boundaries of production zones. The criteria applied to assign sequence hierarchies in the Tombador Formation are based on rock attributes, are easy to apply, and can be used as a baseline for the study of sequence stratigraphy in Precambrian and Phanerozoic basins placed in similar tectonic settings.  相似文献   
994.
Liu M  Hou LJ  Xu SY  Ou DN  Yang Y  Yu J  Wang Q 《Marine pollution bulletin》2006,52(12):1625-1633
The natural isotopic compositions and C/N elemental ratios of sedimentary organic matter were determined in the intertidal flat of the Yangtze Estuary. The results showed that the ratios of carbon and nitrogen stable isotopes were respectively −29.8‰ to − 26.0‰ and 1.6‰–5.5‰ in the flood season (July), while they were −27.3‰ to − 25.6‰ and 1.7‰–7.8‰ in the dry season (February), respectively. The δ13C signatures were remarkably higher in July than in February, and gradually increased from the freshwater areas to the brackish areas. In contrast, there were relatively complex seasonal and spatial changes in stable nitrogen isotopes. It was also reflected that δ15N and C/N compositions had been obviously modified by organic matter diagenesis and biological processing, and could not be used to trace the sources of organic matter at the study area. In addition, it was considered that the mixing inputs of terrigenous and marine materials generally dominated sedimentary organic matter in the intertidal flat. The contribution of terrigenous inputs to sedimentary organic matter was roughly estimated according to the mixing balance model of stable carbon isotopes.  相似文献   
995.
996.
To explain the effects of the ultraviolet (UV) background radiation on the collapse of pre-galactic clouds, we implement a radiation–hydrodynamical calculation, combining one-dimensional spherical hydrodynamics with an accurate treatment of the radiative transfer of ionizing photons. Both absorption and scattering of UV photons are explicitly taken into account. It turns out that a gas cloud contracting within the dark matter potential does not settle into hydrostatic equilibrium, but undergoes run-away collapse even under the presence of the external UV field. The cloud centre is shown to become self-shielded against ionizing photons by radiative transfer effects before shrinking to the rotation barrier. Based on our simulation results, we further discuss the possibility of H2 cooling and subsequent star formation in a run-away collapsing core. The present results are closely relevant to the survival of subgalactic Population III objects as well as to metal injection into intergalactic space.  相似文献   
997.
998.
The Hammond Hill Research Catchment (HH) is a small (120 ha), temperate, second order tributary to Six Mile Creek, Cayuga Lake, and the Great Lakes (42.42°, −76.32°). The HH has been monitored since January 2017 for the purpose of understanding how recent infiltration mixes with antecedent soil water on hillslope forest floors and the spatial and temporal patterns of Root Water Uptake (RWU) by temperate northeastern US tree species (eastern hemlock [Tsuga canadensis], American beech [Fagus grandifolia], and sugar maple [Acer saccharum]). These data are informing us about the hydrologic consequences of anticipated tree species composition change and supporting the development of more refined ecohydrological models. The glaciated catchment is underlain by a shallow confining siltstone layer (1–1.5 m depth) and densely covered with an approximately 60 year old regrowth mixed species forest of hemlock, beech, and other deciduous tree species common to the northeastern US. Current datasets from the HH include precipitation snow water equivalent, discharge, and associated isotopic water compositions, δ2H & δ18O. Measurements of (top 10 cm) soil water content, as well as bulk soil water and hemlock and beech xylem isotopic compositions are made at several locations across a topographic wetness gradient. The near-term role of the HH is to support an understanding of the environmental and ecological drivers of plant RWU competition. All data from the HH are publicly available.  相似文献   
999.
Spatial vent opening probability map of Etna volcano (Sicily, Italy)   总被引:1,自引:0,他引:1  
We produce a spatial probability map of vent opening (susceptibility map) at Etna, using a statistical analysis of structural features of flank eruptions of the last 2?ky. We exploit a detailed knowledge of the volcano structures, including the modalities of shallow magma transfer deriving from dike and dike-fed fissure eruptions analysis on historical eruptions. Assuming the location of future vents will have the same causal factors as the past eruptions, we converted the geological and structural data in distinct and weighted probability density functions, which were included in a non-homogeneous Poisson process to obtain the susceptibility map. The highest probability of new eruptive vents opening falls within a N-S aligned area passing through the Summit Craters down to about 2,000?m?a.s.l. on the southern flank. Other zones of high probability follow the North-East, East-North-East, West, and South Rifts, the latter reaching low altitudes (~400?m). Less susceptible areas are found around the faults cutting the upper portions of Etna, including the western portion of the Pernicana fault and the northern extent of the Ragalna fault. This structural-based susceptibility map is a crucial step in forecasting lava flow hazards at Etna, providing a support tool for decision makers.  相似文献   
1000.
We report erosion rates and processes, determined from in situ‐produced beryllium‐10 (10Be) and aluminum‐26 (26Al), across a soil‐mantled landscape of Arnhem Land, northern Australia. Soil production rates peak under a soil thickness of about 35 cm and we observe no soil thicknesses between exposed bedrock and this thickness. These results thus quantify a well‐defined ‘humped’ soil‐production function, in contrast to functions reported for other landscapes. We compare this function to a previously reported exponential decline of soil production rates with increasing soil thickness across the passive margin exposed in the Bega Valley, south‐eastern Australia, and found remarkable similarities in rates. The critical difference in this work was that the Arnhem Land landscapes were either bedrock or mantled with soils greater than about 35 cm deep, with peak soil production rates of about 20 m/Ma under 35–40 cm of soil, thus supporting previous theory and modeling results for a humped soil production function. We also show how coupling point‐specific with catchment‐averaged erosion rate measurements lead to a better understanding of landscape denudation. Specifically, we report a nested sampling scheme where we quantify average erosion rates from the first‐order, upland catchments to the main, sixth‐order channel of Tin Camp Creek. The low (~5 m/Ma) rates from the main channel sediments reflect contributions from the slowly eroding stony highlands, while the channels draining our study area reflect local soil production rates (~10 m/Ma off the rocky ridge; ~20 m/Ma from the soil mantled regions). Quantifying such rates and processes help determine spatial variations of soil thickness as well as helping to predict the sustainability of the Earth's soil resource under different erosional regimes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号