首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   7篇
测绘学   2篇
地球物理   13篇
地质学   30篇
海洋学   23篇
天文学   16篇
自然地理   4篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   4篇
  2014年   8篇
  2013年   2篇
  2012年   1篇
  2011年   4篇
  2010年   3篇
  2009年   4篇
  2008年   5篇
  2007年   5篇
  2006年   1篇
  2005年   1篇
  2003年   3篇
  2002年   4篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1983年   2篇
  1980年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1970年   1篇
  1953年   2篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
21.
22.
Brothers volcano, of the Kermadec intraoceanic arc, is host to a hydrothermal system unique among seafloor hydrothermal systems known anywhere in the world. It has two distinct vent fields, known as the NW Caldera and Cone sites, whose geology, permeability, vent fluid compositions, mineralogy, and ore-forming conditions are in stark contrast to each other. The NW Caldera site strikes for ??600?m in a SW?CNE direction with chimneys occurring over a ??145-m depth interval, between ??1,690 and 1,545?m. At least 100 dead and active sulfide chimney spires occur in this field and are typically 2?C3?m in height, with some reaching 6?C7?m. Their ages (at time of sampling) fall broadly into three groups: <4, 23, and 35?years old. The chimneys typically occur near the base of individual fault-controlled benches on the caldera wall, striking in lines orthogonal to the slopes. Rarer are massive sulfide crusts 2?C3?m thick. Two main types of chimney predominate: Cu-rich (up to 28.5?wt.% Cu) and, more commonly, Zn-rich (up to 43.8?wt.% Zn). Geochemical results show that Mo, Bi, Co, Se, Sn, and Au (up to 91?ppm) are correlated with the Cu mineralization, whereas Cd, Hg, Sb, Ag, and As are associated with the dominant Zn-rich mineralization. The Cone site comprises the Upper Cone site atop the summit of the recent (main) dacite cone and the Lower Cone site that straddles the summit of an older, smaller, more degraded dacite cone on the NE flank of the main cone. Huge volumes of diffuse venting are seen at the Lower Cone site, in contrast to venting at both the Upper Cone and NW Caldera sites. Individual vents are marked by low-relief (??0.5?m) mounds comprising predominately native sulfur with bacterial mats. Vent fluids of the NW Caldera field are focused, hot (??300°C), acidic (pH????2.8), metal-rich, and gas-poor. Calculated end-member fluids from NW Caldera vents indicate that phase separation has occurred, with Cl values ranging from 93% to 137% of seawater values. By contrast, vent fluids at the Cone site are diffuse, noticeably cooler (??122°C), more acidic (pH?1.9), metal-poor, and gas-rich. Higher-than-seawater values of SO4 and Mg in the Cone vent fluids show that these ions are being added to the hydrothermal fluid and are not being depleted via normal water/rock interactions. Iron oxide crusts 3?years in age cover the main cone summit and appear to have formed from Fe-rich brines. Evidence for magmatic contributions to the hydrothermal system at Brothers includes: high concentrations of dissolved CO2 (e.g., 206?mM/kg at the Cone site); high CO2/3He; negative ??D and ??18OH2O for vent fluids; negative ??34S for sulfides (to ?4.6??), sulfur (to ?10.2??), and ??15N2 (to ?3.5??); vent fluid pH values to 1.9; and mineral assemblages common to high-sulfidation systems. Changing physicochemical conditions at the Brothers hydrothermal system, and especially the Cone site, occur over periods of months to hundreds of years, as shown by interlayered Cu?+?Au- and Zn-rich zones in chimneys, variable fluid and isotopic compositions, similar shifts in 3He/4He values for both Cone and NW Caldera sites, and overprinting of ??magmatic?? mineral assemblages by water/rock-dominated assemblages. Metals, especially Cu and possibly Au, may be entering the hydrothermal system via the dissolution of metal-rich glasses. They are then transported rapidly up into the system via magmatic volatiles utilizing vertical (??2.5?km long), narrow (??300-m diameter) ??pipes,?? consistent with evidence of vent fluids forming at relatively shallow depths. The NW Caldera and Cone sites are considered to represent stages along a continuum between water/rock- and magmatic/hydrothermal-dominated end-members.  相似文献   
23.
Here, we describe a technique that allows the genetic linage analysis of 16S rRNA genes in bacteria observed under a microscope. The technique includes the isolation of microbial cells using a laser microdissection microscope, lysis of the cells, and amplification of the 16S rRNA genes in the isolated cells without interference by bacterial DNA contamination from the experimental environment or reagents. Using this technique, we successfully determined 15 16S rRNA gene sequences in cells isolated from an Antarctic iceberg. These sequences showed 94%–100% identity to their closest strains, which included bacteria that occur in aqueous, marine, and soil environments.  相似文献   
24.
It is greatly expected that the relic neutrino background from past supernovae will be detected by Superkamiokande (SK) which is now under construction. We calculate the spectrum and the event rate at SK systematically by using the results of simulations of a supernova explosion and reasonable supernova rates. We also investigate the effect of a cosmological constant, Λ, on the spectrum, since some recent cosmological observations strongly suggest the existence of Λ. We find following results. (1) The spectrum has a peak at about 3 MeV, which is much lower than that of previous estimates (6–10 MeV). (2) The event rate at SK in the range from 10 MeV to 50 MeV, where the relic neutrinos from past supernovae are dominant, is about 25h502(RSN/0.1 yr−1)(nGh50−3/0.02 Mpc−3) events per year, where RSN is the supernova rate in a galaxy, nG is the number density of galaxies, and h50 = H0/(50 km/s Mpc), where H0 is the Hubble constant. (3) The event rate is almost insensitive to Λ. The flux increases in the low energy side (< 10 MeV) with increasing Λ, but decreases in the high energy side (> 10 MeV) in models in which the integrated number of supernovae in one galaxy is fixed.  相似文献   
25.
The Yonaguni Knoll IV hydrothermal vent field (24°51′N, 122°42′E) is located at water depths of 1370–1385 m near the western edge of the southern Okinawa Trough. During the YK03–05 and YK04–05 expeditions using the submersible Shinkai 6500, both hydrothermal precipitates (sulfide/sulfate/carbonate) and high temperature fluids (Tmax = 328°C) presently venting from chimney‐mound structures were extensively sampled. The collected venting fluids had a wide range of chemistry (Cl concentration 376–635 mmol kg?1), which is considered as evidence for sub‐seafloor phase separation. While the Cl‐enriched smoky black fluids were venting from two adjacent chimney‐mound structures in the hydrothermal center, the clear transparent fluids sometimes containing CO2 droplet were found in the peripheral area of the field. This distribution pattern could be explained by migration of the vapor‐rich hydrothermal fluid within a porous sediment layer after the sub‐seafloor phase separation. The collected hydrothermal precipitates demonstrated a diverse range of mineralization, which can be classified into five groups: (i) anhydrite‐rich chimneys, immature precipitates including sulfide disseminations in anhydrite; (ii) massive Zn‐Pb‐Cu sulfides, consisting of sphalerite, wurtzite, galena, chalcopyrite, pyrite, and marcasite; (iii) Ba‐As chimneys, composed of barite with sulfide disseminations, sometimes associated with realgar and orpiment overgrowth; (iv) Mn‐rich chimneys, consisting of carbonates (calcite and magnesite) and sulfides (sphalerite, galena, chalcopyrite, alabandite, and minor amount of tennantite and enargite); and (v) pavement, silicified sediment including abundant native sulfur or barite. Sulfide/sulfate mineralization (groups i–iii) was found in the chimney–mound structure associated with vapor‐loss (Cl‐enriched) fluid venting. In contrast, the sulfide/carbonate mineralization (group iv) was specifically found in the chimneys where vapor‐rich (Cl‐depleted) fluid venting is expected, and the pavement (group v) was associated with diffusive venting from the seafloor sediment. This correspondence strongly suggests that the subseafloor phase separation plays an important role in the diverse range of mineralization in the Yonaguni IV field. The observed sulfide mineral assemblage was consistent with the sulfur fugacity calculated from the FeS content in sphalerite/wurtzite and the fluid temperature for each site, which suggests that the shift of the sulfur fugacity due to participation of volatile species during phase separation is an important factor to induce diverse mineralization. In contrast, carbonate mineralization is attributed to the significant mixing of vapor‐rich hydrothermal fluid and seawater. A submarine hydrothermal system within a back‐arc basin in the continental margin may be considered as developed in a geologic setting favorable to a diverse range of mineralization, where relatively shallow water depth induces sub‐seafloor phase separation of hydrothermal fluid, and sediment accumulation could enhance migration of the vapor‐rich hydrothermal fluid.  相似文献   
26.
Field Emission SEM (FESEM) textural observations, crystal size distribution (CSD) analyses, UV-excited luminescence imaging, and photoluminescence (PL) microspectroscopy excited by 488 nm laser were conducted on two texturally contrasting samples of carbonado, a kind of natural polycrystalline diamond from the Central African Republic (CAR). The investigated carbonado samples A and B show extremely different textures: sample A is made up of faceted crystals accompanied by abundant, small rectangular pores, whereas sample B has a granular texture with coarser crystals and scarce, large pores. Diamond crystals smaller than 2–3 µm are enriched in sample A but depleted in sample B. These textural features indicate that sample B diamonds were annealed under thermodynamically stable P–T conditions. The pore characteristics indicate that fluid permeability was higher for sample A than sample B. Photoluminescence (PL) spectra indicate that samples A and B correspond to Group A and B carbonados in the classification of Kagi et al. (1994), respectively, so that sample A reveals emissions from the H3 center without any N–V0 derived emission at 575 nm, whereas sample B shows emissions from the 3H center and the N–V0 defect. In addition, UV-excited luminescence images and photoluminescence spectra for sample B indicate that the rims of diamond crystals within several microns of a pore show luminescence features similar to those of Group AB carbonados (Kagi et al., 1994), indicating that this Group AB material was formed from Group B by irradiation from pore-filling, radioactive-element-bearing materials at a low temperature. The extent of the low-temperature irradiation is considered to depend on fluid permeability, and the Group A material was strongly irradiated due to its permeable texture whereas the Group B material was not significantly irradiated due to its less permeable granular texture. These results indicate that Group B carbonados have retained their original PL spectral features produced under high pressures and temperatures at mantle depths.  相似文献   
27.
We report cloudy micro- and nano-inclusions in a superdeep diamond from São-Luiz, Brazil which contains inclusions of ferropericlase (Mg, Fe)O and former bridgmanite (Mg, Fe)SiO3 and ringwoodite (Mg, Fe)2SiO4. Field emission-SEM and TEM observations showed that the cloudy inclusions were composed of euhedral micro-inclusions with grain sizes ranging from tens nanometers to submicrometers. Infrared absorption spectra of the cloudy inclusions showed that water, carbonate, and silicates were not major components of these micro- and nano-inclusions and suggested that the main constituent of the inclusions was infrared-inactive. Some inclusions were suggested to contain material with lower atomic numbers than that of carbon. Mineral phase of nano- and micro-inclusions is unclear at present. Microbeam X-ray fluorescence analysis clarified that the micro-inclusions contained transition metals (Cr, Mn, Fe, Co, Ni, Cu, Zn) possibly as metallic or sulfide phases. The cloudy inclusions provide an important information on the growth environment of superdeep diamonds in the transition zone or the lower mantle.  相似文献   
28.
We present evidence for strong hydrothermal activity in the eastern Manus Basin (depth: 1700–2100 m), the existence of large scale triple-layered buoyant plumes at depths of 1100 m (“shallow plume”), 1700 m (“deep plume”), and 1400 m (“middle plume” with less extent than the other two plumes) that were revealed from water column anomalies of CH4, Mn, Al and pH observed in November to December 1990. Judging from the horizontal distribution of these parameters, the deep plume seems to originate from two distinct hydrothermal sites (eastern and western sites) in the research area, the eastern site being visually ascertained with deep-tow observations at the same time. The CH4/Mn ratio (mol mol−1) of the deep plume (0.02–0.05) is the lowest yet observed in hydrothermal plumes. The order of magnitude difference of CH4/Mn ratios between the shallow plume and the deep plume suggests that different kinds of fluid-rock interaction occurred to make the hydrothermal end members for the deep and shallow plumes. The shallow plume, which had an areal extent of more than 50 km, may be an episodic “megaplume”, because it was not recognized in the previous CH4 profiles in 1986, and because it has a similar CH4/Mn ratio as the megaplume observed in the North Fiji Basin. We found that the eastern deep plume is characterized by enormously high aluminium concentrations (0.6– 1.5 μmol kg−1), pH anomalies (0.1) and high Al/Mn ratios (10–17). The endmember fluid for the eastern deep plume may have an unusually low pH value to dissolve this much aluminum during fluid-rock interaction, or this plume may originate from an eruption-influenced fluid.  相似文献   
29.
30.
The major elements and the minor elements cadmium, chromium and vanadium in 12 samples of shallow-water deposits collected in Tokyo Bay were studied. Average silica content of the deposits is 53.93%, which is approximate to the average of 54.15% of red clay. Iron (av. 5.67% Fe2O3), titanium (av. 0.71% TiO2), especially manganese (av. 0.87% MnO), are more abundant in the deposits than in the deposits along the entire sea-coasts of Honshu and of Nanao Bay, Japan. The deposits show higher contents of cadmium (av. 0.61 ppm), the chromium (av. 86 ppm) and vanadium (av. 79ppm). About 3 to 17 times cadmium and manganese contents compared with those in the deposits along the sea-coasts of Honshu and of Nanao Bay, Japan was found. Such accumulation, of cadmium and manganese in the deposits is probably caused by artificial contamination rather than of natural origin. No relation was found between the contents of cadmium, chromium and vanadium and those of major elements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号