首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   14篇
  国内免费   1篇
测绘学   2篇
大气科学   15篇
地球物理   61篇
地质学   39篇
海洋学   20篇
天文学   23篇
综合类   1篇
自然地理   8篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   6篇
  2018年   9篇
  2017年   3篇
  2016年   11篇
  2015年   10篇
  2014年   12篇
  2013年   15篇
  2012年   9篇
  2011年   6篇
  2010年   9篇
  2009年   11篇
  2008年   6篇
  2007年   5篇
  2006年   6篇
  2005年   4篇
  2004年   4篇
  2003年   6篇
  2002年   3篇
  2001年   4篇
  1999年   2篇
  1998年   7篇
  1996年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1970年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有169条查询结果,搜索用时 15 毫秒
81.
In this article, different strategies for estimating first-order degradation rate constants from measured field data are compared by application to multiple, synthetic, contaminant plumes. The plumes were generated by numerical simulation of contaminant transport and degradation in virtual heterogeneous aquifers. These sites were then individually and independently investigated on the computer by installation of extensive networks of observation wells. From the data measured at the wells, that is, contaminant concentrations, hydraulic conductivities, and heads, first-order degradation rates were estimated by three 1D centerline methods, which use only measurements located on the plume axis, and a two-dimensional method, which uses all concentration measurements available downgradient from the contaminant source. Results for both strategies show that the true rate constant used for the numerical simulation of the plumes in general tends to be overestimated. Overestimation is stronger for narrow plumes from small source zones, with an average overestimation factor of about 5 and single values ranging from 0.5 to 20, decreasing for wider plumes, with an average overestimation factor of about 2 and similar spread. Reasons for this overestimation are identified in the velocity calculation, the dispersivity parameterization, and off-centerline measurements. For narrow plumes, the one- and the two-dimensional strategies show approximately the same amount of overestimation. For wider plumes, however, incorporation of all measurements in the two-dimensional approach reduces the estimation error. No significant relation between the number of observation wells in the monitoring network and the quality of the estimated rate constant is found for the two-dimensional approach.  相似文献   
82.
Ji  Fei  Evans  Jason P.  Di Virgilio  Giovanni  Nishant  Nidhi  Di Luca  Alejandro  Herold  Nicholas  Downes  Stephanie M.  Tam  Eugene  Beyer  Kathleen 《Climate Dynamics》2020,55(9-10):2453-2468

The vertical temperature profile in the atmosphere reflects a balance between radiative and convective processes and interactions with the oceanic and land surfaces. Changes in vertical temperature profiles can affect atmospheric stability, which in turn can impact various aspects of weather systems. In this study, we analyzed recent-past trends of temperature over the Australian region using a homogenized monthly upper-air temperature dataset and four reanalysis datasets (NCEP, ERA-Interim, JRA-55 and MERRA). We also used outputs of 12 historical and future regional climate model (RCM) simulations from the NSW/ACT (New South Wales/Australian Capital Territory) Regional Climate Modelling (NARCliM) project and 6 RCM simulations from the CORDEX (Coordinated Regional Downscaling Experiment) Australasian project to investigate projected changes in vertical temperature profiles. The results show that the currently observed positive trend in the troposphere and negative trend in the lower stratosphere will continue in the future with significant warming over the whole troposphere and largest over the middle to upper troposphere. The increasing temperatures are found to be latitude-dependent with clear seasonal variations, and a strong diurnal variation for the near surface layers and upper levels in tropical regions. Changes in the diurnal variability indicate that near surface layers will be less stable in the afternoon leading to conditions favoring convective systems and more stable in the early morning which is favorable for temperature inversions. The largest differences of future changes in temperature between the simulations are associated with the driving GCMs, suggesting that large-scale circulation plays a dominant role in regional atmospheric temperature change.

  相似文献   
83.
There are both internal and external controlling factors leading to slope instability and susceptibility to mass movement processes. This paper explores which external climatic variables of different temporal scales influence the occurrence of high-magnitude landslide events. The investigations were focused on the Wellenkalk-cuesta scarp in the Thuringia Basin (Thüringer Becken) in central Germany. The cuesta scarp is composed of a densely jointed limestone caprock (Wellenkalk), and impermeable mudstones and marls of the Upper Bunter Sandstone (Röt) in the lower part of the slope. Mass movements are a typical feature of the Wellenkalk-scarp. The entire scarp slope length (1000 km) has been systematically mapped and investigated in a comprehensive research project in order to provide reliable information on the spatial distribution and control of the mass movements. More than 20% of the scarp slope has been influenced by various types of Holocene mass movements with strong differences in spatial frequencies. Sixteen high-magnitude landslides (Sturzfließungen) were identified by field inspection and mapping of slope geomorphology. Information on locations, morphometric characteristics, stratigraphic positions and rainfall-related attributes of the scarp slopes affected by the large landslides is presented.Mean annual rainfall amounts decrease from more than 800 mm in the western part of the basin to less than 550 mm in the east. Meteorological statistics on the spatial distribution of heavy rainfall intensities of different durations and return periods show that greatest precipitation intensities in short events (1 h) are reached at the western margin. Differences in rainfall intensities between the western and eastern parts decrease with increasing duration of the events. Where available, event-related meteorological information was collected. The spatial distribution of the landslides is most closely mirrored in the pattern of mean annual precipitation, though this variable is generally not thought to be a satisfactory or reliable climatic controlling factor. No landslides occur below a threshold value of 700 mm. The empirical data show that some general level of average perennial water input into the slope system seems to be of decisive importance for the occurrence of high-magnitude mass movements. Only when the precondition of a more general hydrological disposition is fulfilled, a direct triggering of high-magnitude mass movements by a short-time intensive rainfall period or event can become effective.  相似文献   
84.
Evaluation of Two Energy Balance Closure Parametrizations   总被引:1,自引:0,他引:1  
A general lack of energy balance closure indicates that tower-based eddy-covariance (EC) measurements underestimate turbulent heat fluxes, which calls for robust correction schemes. Two parametrization approaches that can be found in the literature were tested using data from the Canadian Twin Otter research aircraft and from tower-based measurements of the German Terrestrial Environmental Observatories (TERENO) programme. Our analysis shows that the approach of Huang et al. (Boundary-Layer Meteorol 127:273–292, 2008), based on large-eddy simulation, is not applicable to typical near-surface flux measurements because it was developed for heights above the surface layer and over homogeneous terrain. The biggest shortcoming of this parametrization is that the grid resolution of the model was too coarse so that the surface layer, where EC measurements are usually made, is not properly resolved. The empirical approach of Panin and Bernhofer (Izvestiya Atmos Oceanic Phys 44:701–716, 2008) considers landscape-level roughness heterogeneities that induce secondary circulations and at least gives a qualitative estimate of the energy balance closure. However, it does not consider any feature of landscape-scale heterogeneity other than surface roughness, such as surface temperature, surface moisture or topography. The failures of both approaches might indicate that the influence of mesoscale structures is not a sufficient explanation for the energy balance closure problem. However, our analysis of different wind-direction sectors shows that the upwind landscape-scale heterogeneity indeed influences the energy balance closure determined from tower flux data. We also analyzed the aircraft measurements with respect to the partitioning of the “missing energy” between sensible and latent heat fluxes and we could confirm the assumption of scalar similarity only for Bowen ratios $\approx $ 1.  相似文献   
85.
We investigated a 3.75-m-long lacustrine sediment record from Lake Äntu Sinijärv, northern Estonia, which has a modeled basal age >12,800 cal yr BP. Our multi-proxy approach focused on the stable oxygen isotope composition (δ18O) of freshwater tufa. Our new palaeoclimate information for the Eastern Baltic region, based on high-resolution δ18O data (219 samples), is supported by pollen and plant macrofossil data. Radiocarbon dates were used to develop a core chronology and estimate sedimentation rates. Freshwater tufa precipitation started ca. 10,700 cal yr BP, ca. 2,000 years later than suggested by previous studies on the same lake. Younger Dryas cooling is documented clearly in Lake Äntu Sinijärv sediments by abrupt appearance of diagnostic pollen (Betula nana, Dryas octopetala), highest mineral matter content in sediments (up to 90 %) and low values of δ18O (less than ?12 ‰). Globally recognized 9.3- and 8.2-ka cold events are weakly defined by negative shifts in δ18O values, to ?11.3 and ?11.7 ‰, respectively, and low concentrations of herb pollen and charcoal particles. The Holocene thermal maximum (HTM) is palaeobotanically well documented by the first appearance and establishment of nemoral thermophilous taxa and presence of water lilies requiring warm conditions. Isotope values show an increasing trend during the HTM, from ?11.5 to ?10.5 ‰. Relatively stable environmental conditions, represented by only a small-scale increase in δ18O (up to 1 ‰) and high pollen concentrations between 5,000 and 3,000 cal yr BP, were followed by a decrease in δ18O, reaching the most negative value (?12.7 ‰) recorded in the freshwater tufa ca. 900 cal yr BP.  相似文献   
86.
Many older unreinforced masonry (URM) buildings feature timber floors and solid brick masonry. Simple equivalent frame models can help predicting the expected failure mechanism and estimating the strength of a URM wall. When modelling a URM wall with an equivalent frame model rather than, for example, a more detailed simplified micro-model, the strengths of the piers and spandrels need to be estimated from mechanical or empirical models. Such models are readily available for URM piers, which have been tested in many different configurations. On the contrary, only few models for spandrel strength have been developed. This paper reviews these models, discusses their merits, faults and compares the predicted strength values to the results of recent experimental tests on masonry spandrels. Based on this assessment, the paper outlines recommendations for a new set of strength equations for masonry spandrels.  相似文献   
87.
Biological markers of produced water (PW) exposure were studied in Atlantic cod (Gadus morhua) in both laboratory and field experiments, using authentic PW from a North Sea oil field. In the laboratory study, the PW exposure yielded significantly elevated levels of metabolites of polycyclic aromatic hydrocarbons (PAHs) and alkylphenols (APs) in bile even at the lowest exposure dose (0.125% PW). Other biomarkers (hepatic CYP1A induction and DNA adduct formation) responded at 0.25% and 0.5% PW concentrations. In the field study, bile metabolite markers and hepatic CYP1A were clearly increased in fish caged close to the PW outfall. Induction of plasma vitellogenin was not found in laboratory or field exposures, suggesting that the levels of oestrogen agonists (such as APs) might not have been sufficient to elicit induction, under the present conditions. The applicability of the biomarkers for use in water column biomonitoring programs is discussed.  相似文献   
88.
In this paper, high-resolution wave, current and water depth fields derived by marine X-Band radar are presented for a coastal region of extreme tidal currents in the presence of inhomogeneous bathymetry at the south coast of New Zealand’s North Island. The current and water depth information for the presented location covers an area of approximately 13 km2 with a spatial resolution of 225 m and an update rate of 3 min. The sea state data provides a spatial representation of coastal effects like wave shoaling and refraction forced by bathymetry and current interaction. The near-surface current measurements about 3 km off the coast show expected tidal current pattern with maximum northwest/southeast current of 1.5–2 m/s alongshore. This is in agreement with currents from the RiCOM hydrodynamic model. The spatial resolution of the observed current field exhibits in addition small-scale current features caused by the influence of the local bathymetry. These data demonstrate the insight to be gained in complex, high-energy coastal situations through the use of high-resolution remote sensing techniques.  相似文献   
89.
Recent images from the High Resolution Imaging Science Experiment (HiRISE) camera have shown that slope streaks have relief on the order of a meter or less. This study presents observations of transverse bedforms and infill deposits within slope streak beds that were not previously identified or were uncommon from earlier analyses of HiRISE images. Transverse bedforms are linear to slightly arcuate features oriented transverse to the slope streak bed which may be analogous to terrestrial splash or coarse-grained ripples based on their morphology, wavelength, and amplitude. In addition to the bedforms, there is also evidence that slope streak beds gradually shallow over time by infilling of material. The presence of ripples within slope streaks implies that saltation-capable material is available on the surface today and/or was available in the recent past. Although airfall dust is not a capable saltation source material, aggregates of electrostatically-bound dust that are possibly later cemented by salts may serve as a source. From the results of this study, we hypothesize a sequence of events in a slope streak formation and modification cycle where grains saltate to form ripples along the bed of a slope streak, airfall dust mantling causes gradual fading of the streak, and infill material buries the ripples, eventually reaching the pre-avalanche surface that removes all traces of relief.  相似文献   
90.
The basic functionality and performance of a new Schlumberger active wireline heave compensation system on the JOIDES Resolution was evaluated during the sea trial and a 3-year period of the IODP Phase II operations. A suite of software programs was developed to enable real-time monitoring of the dynamics of logging tools, and assess the efficiency of wireline heave compensation during downhole operations. The evaluation of the system effectiveness was performed under normal logging conditions as well as during stationary tests. Logging data were analyzed for their overall quality and repeatability, and to assess the reliability of high-resolution data such as formation microscanner (FMS) electrical images. This revealed that the system reduces 65–80 % of displacement or 88–98 % variance of downhole tool motion in stationary mode under heave conditions of ±0.2–1.5 m and water depths of 300–4,500 m in open holes. Under similar water/heave conditions, the compensator system reduces tool displacement by 50–60 %, or 75–84 % variance in downhole tool motion during normal logging operations. Such compensation efficiency (CE) is comparable to previous compensation systems, but using advanced and upgradeable technologies, and provides 50–85 % heave motion and heave variance attenuation. Moreover, logging down/up at low speeds (300–600 m/h) reduces the system’s CE values by 15–20 %, and logging down at higher speeds (1,000–1,200 m/h) eliminates CE values by 55–65 %. Considering the high quality of the logging data collected, it is concluded that the new system can provide an improved level of compensation over previous systems. Also, if practically feasible, future integration of downhole cable dynamics as an input feedback into the current system could further improve its compensation efficiency during logging operations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号