首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7805篇
  免费   153篇
  国内免费   314篇
测绘学   212篇
大气科学   605篇
地球物理   1625篇
地质学   2894篇
海洋学   639篇
天文学   1849篇
综合类   29篇
自然地理   419篇
  2023年   45篇
  2022年   52篇
  2021年   58篇
  2020年   67篇
  2019年   81篇
  2018年   233篇
  2017年   190篇
  2016年   275篇
  2015年   161篇
  2014年   261篇
  2013年   414篇
  2012年   237篇
  2011年   404篇
  2010年   288篇
  2009年   456篇
  2008年   358篇
  2007年   325篇
  2006年   339篇
  2005年   309篇
  2004年   290篇
  2003年   275篇
  2002年   252篇
  2001年   219篇
  2000年   209篇
  1999年   179篇
  1998年   168篇
  1997年   163篇
  1996年   154篇
  1995年   138篇
  1994年   114篇
  1993年   93篇
  1992年   80篇
  1991年   87篇
  1990年   80篇
  1989年   83篇
  1988年   59篇
  1987年   101篇
  1986年   64篇
  1985年   64篇
  1984年   69篇
  1983年   71篇
  1982年   73篇
  1981年   68篇
  1980年   54篇
  1979年   51篇
  1977年   48篇
  1976年   47篇
  1975年   35篇
  1974年   30篇
  1973年   41篇
排序方式: 共有8272条查询结果,搜索用时 0 毫秒
901.
We use the hydrographic data obtained during the joint survey of the Yellow Sea by the First Institute of Oceanography, China and the Korea Ocean Research and Development Institute, Korea, to quantify the spatial structures and temporal evolution of the southern Yellow Sea Cold Water Mass (YSCWM). It is indicated that the southern YSCWM is a water mass that develops in summer and decays in fall. In winter, due to the intrusion of the Yellow Sea Warm Current (YSWC), the central area (approximately between 34°N and 35°N, 122°E and 124°E) of the Yellow Sea is mainly occupied by relatively high temperature water (T>10 °C). By contrast, from early summer to fall, under the seasonal thermocline, the central area of Yellow Sea is occupied by cold water (T<10 °C). In summer, the southern YSCWM has two cold cores. One is formed locally southeast of Shandong Peninsula, and the other one has a tongue-like feature occupying the area approximately between 34°N and 37°N, 123°E and 126°E. The bottom layer temperature anomalies from February to July in the cold tongue region, along with the trajectories of the bottom floaters, suggest that the cold water mass in the northeast region has a displacement from the north to the central area of the Yellow Sea during the summer.  相似文献   
902.
Qin XS  Huang GH  Li YP 《Ground water》2008,46(5):755-767
An integrated fuzzy simulation-assessment method (FSAM) was developed for assessing environmental risks from petroleum hydrocarbon contamination in ground water. In the FSAM, techniques of fuzzy simulation and fuzzy risk assessment were coupled into a general framework to reflect a variety of system uncertainties. A petroleum-contaminated site located in western Canada was selected as a study case for demonstrating applicability of the proposed method. The risk assessment results demonstrated that system uncertainties would significantly impact expressions of risk-level outputs. A relatively deterministic expression of the risks would have clearer representations of the study problem but may miss valuable uncertain information; conversely, an assessment under vaguer system conditions would help reveal potential consequences of adverse effects but would suffer from a higher degree of fuzziness in presenting the modeling outputs. Based on the risk assessment results, a decision analysis procedure was used to calculate a general risk index (GRI) to help identify proper responsive actions. The proposed method was useful for evaluating risks within a system containing multiple factors with complicated uncertainties and interactions and providing support for identifying proper site management strategies.  相似文献   
903.
Oversampling techniques are often used in porous media simulations to achieve high accuracy in multiscale simulations. These methods reduce the effect of artificial boundary conditions that are imposed in computing local quantities, such as upscaled permeabilities or basis functions. In the problems without scale separation and strong non-local effects, the oversampling region is taken to be the entire domain. The basis functions are computed using single-phase flow solutions which are further used in dynamic two-phase simulations. The standard oversampling approaches employ generic global boundary conditions which are not associated with actual flow boundary conditions. In this paper, we propose a flow based oversampling method where the actual two-phase flow boundary conditions are used in constructing oversampling auxiliary functions. Our numerical results show that the flow based oversampling approach is several times more accurate than the standard oversampling method. We provide partial theoretical explanation for these numerical observations.  相似文献   
904.
In general, the accuracy of numerical simulations is determined by spatial and temporal discretization levels. In fractured porous media, the time step size is a key factor in controlling the solution accuracy for a given spatial discretization. If the time step size is restricted by the relatively rapid responses in the fracture domain to maintain an acceptable level of accuracy in the entire simulation domain, the matrix tends to be temporally over-discretized. Implicit sub-time stepping applies smaller sub-time steps only to the sub-domain where the accuracy requirements are less tolerant and is most suitable for problems where the response is high in only a small portion of the domain, such as within and near the fractures in fractured porous media. It is demonstrated with illustrative examples that implicit sub-time stepping can significantly improve the simulation efficiency with minimal loss in accuracy when simulating flow and transport in fractured porous media. The methodology is successfully applied to density-dependent flow and transport simulations in a Canadian Shield environment, where the flow and transport is dominated by discrete, highly conductive fracture zones.  相似文献   
905.
The last magmatic eruption of Soufrière of Guadeloupe dated at 1530 A.D. (Soufrière eruption) is characterized by an onset with a partial flank-collapse and emplacement of a debris-avalanche that was followed by a sub-plinian VEI 2–3 explosive short-lived eruption (Phase-1) with a column that reached a height between 9 and 12 km producing about 3.9 × 106 m3 DRE (16.3 × 106 m3 bulk) of juvenile products. The column recurrently collapsed generating scoriaceous pyroclastic flows in radiating valleys up to a distance of 5–6 km with a maximum interpolated bulk deposit volume of 11.7 × 106 m3 (5 × 106 m3 DRE). We have used HAZMAP, a numerical simple first-order model of tephra dispersal [Macedonio, G., Costa, A., Longo, A., 2005. A computer model for volcanic ash fallout and assessment of subsequent hazard. Comput. Geosci. 31, 837–845] to reconstruct to a first approximation the potential dispersal of tephra and associated tephra mass loadings generated by the sub-plinian Phase 1 of the 1530 A.D. eruption. We have tested our model on a deterministic average dry season wind profile that best-fits the available data as well as on a set of randomly selected wind profiles over a 5 year interval that allows the elaboration of probabilistic maps for the exceedance of specific tephra mass load thresholds. Results show that in the hypothesis of a future 1530 A.D. scenario, populated areas to a distance of 3–4 km west–southwest of the vent could be subjected to a static load pressure between 2 and 10 kPa in case of wet tephra, susceptible to cause variable degrees of roof damage. Our results provide volcanological input parameters for scenario and event-tree definition, for assessing volcanic risks and evaluating their impact in case of a future sub-plinian eruption which could affect up to 70 000 people in southern Basse-Terre island and the region. They also provide a framework to aid decision-making concerning land management and development. A sub-plinian eruption is the most likely magmatic scenario in case of a future eruption of this volcano which has shown, since 1992, increasing signs of low-energy seismic, thermal, and acid degassing unrest without significant deformation.  相似文献   
906.
El Chichón volcano (Chiapas, Mexico) erupted violently in March–April 1982, breaching through the former volcano–hydrothermal system. Since then, the 1982 crater has hosted a shallow (1–3.3 m, acidic (pH ∼ 2.2) and warm (∼ 30 °C) crater lake with a strongly varying chemistry (Cl/SO4 = 0–79 molar ratio). The changes in crater lake chemistry and volume are not systematically related to the seasonal variation of rainfall, but rather to the activity of near-neutral geyser-like springs in the crater (Soap Pool). These Soap Pool springs are the only sources of Cl for the lake. Their geyser-like behaviour with a long-term (months to years) periodicity is due to a specific geometry of the shallow boiling aquifer beneath the lake, which is the remnant of the 1983 Cl-rich (24,000 mg/l) crater lake water. The Soap Pool springs decreased in Cl content over time. The zero-time extrapolation (1982, year of the eruption) approaches the Cl content in the initial crater lake, meanwhile the extrapolation towards the future indicates a zero-Cl content by 2009 ± 1. This particular situation offers the opportunity to calculate mass balance and Cl budget to quantify the lake–spring system in the El Chichón crater. These calculations show that the water balance without the input of SP springs is negative, implying that the lake should disappear during the dry season. The isotopic composition of lake waters (δD and δ18O) coincide with this crater lake-SP dynamics, reflecting evaporation processes and mixing with SP geyser and meteoric water. Future dome growth, not observed yet in the post-1982 El Chichón crater, may be anticipated by changes in lake chemistry and dynamics.  相似文献   
907.
Irgarol 1051 (2-methythiol-4-tert-butylamino-6-cyclopropylamino-s-triazine) is an algaecide commonly used in antifouling paints. It undergoes photodegradation which yields M1 (2-methylthio-4-tert-butylamino-6-amino-s-triazine) as its major and most stable degradant. Elevated levels of both Irgarol and M1 have been detected in coastal waters worldwide; however, ecotoxicity effects of M1 to various marine autotrophs such as cyanobacteria are still largely unknown. This study firstly examined and compared the 96 h toxicities of Irgarol and M1 to the cyanobacterium Chroococcus minor and two marine diatom species, Skeletonema costatum and Thalassiosira pseudonana. Our results suggested that Irgarol was consistently more toxic to all of the three species than M1 (96 h EC50 values: C. minor, 7.71 microug L(-1) Irgarol vs. > 200 microg L(-1) M1; S. costatum, 0.29 microg L(-1) Irgarol vs. 11.32 microg L(-1)M1; and T. pseudonana, 0.41 microg L(-1) Irgarol vs. 16.50 microg L(-1)M1). Secondly, we conducted a meta-analysis of currently available data on toxicities of Irgarol and M1 to both freshwater and marine primary producers based on species sensitivity distributions (SSDs). Interestingly, freshwater autotrophs are more sensitive to Irgarol than their marine counterparts. For marine autotrophs, microalgae are generally more sensitive to Irgarol than macroalgae and cyanobacteria. With very limited available data on M1 (i.e. five species), M1 might be less toxic than Irgarol; nonetheless this finding warrants further confirmation with additional data on other autotrophic species.  相似文献   
908.
The effects of prolonged exposure to reduced oxygen levels (3.0 and 1.5 mg O(2)l(-1)) on marine scavenging gastropods Nassarius festivus were studied for 8 weeks. The percentages of individuals engaged in feeding and amount of food consumed were reduced as oxygen level decreased; absorption efficiency, however, did not vary significantly with oxygen level. Oxygen consumption rates and specific oxygen consumption rates were lower at reduced oxygen levels. Reproduction occurred at all oxygen levels with less egg capsules being produced at lower oxygen levels. Egg size and number of eggs per capsule, however, were not significantly affected by oxygen level. The increase in shell length was 12%, 6% and 5% at 6.0 mgO(2)l(-1) (normoxia), 3.0 mgO(2)l(-1) and 1.5 mgO(2)l(-1), respectively. At the end of the experiment, the amount of energy allocated to growth and reproduction decreased at reduced oxygen levels with values obtained at 3.0 mgO(2)l(-1) and 1.5 mgO(2)l(-1) being 48% and 70% lower than those at 6.0 mgO(2)l(-1). At all oxygen levels, most of the accumulated energy was allocated to shell growth and reproduction, and the amount allocated to somatic growth was relatively insignificant. The reduction in energy allocated to reproduction was greater than that to shell growth as the oxygen level was reduced, indicating a strategic energy allocation of marine scavengers under stressful conditions to enhance survival.  相似文献   
909.
We present a simple method for long- and short-term earthquake forecasting (estimating earthquake rate per unit area, time, and magnitude). For illustration we apply the method to the Pacific plate boundary region and the Mediterranean area surrounding Italy and Greece. Our ultimate goal is to develop forecasting and testing methods to validate or falsify common assumptions regarding earthquake potential. Our immediate purpose is to extend the forecasts we made starting in 1999 for the northwest and southwest Pacific to include somewhat smaller earthquakes and then adapt the methods to apply in other areas. The previous forecasts used the CMT earthquake catalog to forecast magnitude 5.8 and larger earthquakes. Like our previous forecasts, the new ones here are based on smoothed maps of past seismicity and assume spatial clustering. Our short-term forecasts also assume temporal clustering. An important adaptation in the new forecasts is to abandon the use of tensor focal mechanisms. This permits use of earthquake catalogs that reliably report many smaller quakes with no such mechanism estimates. The result is that we can forecast earthquakes at higher spatial resolution and down to a magnitude threshold of 4.7. The new forecasts can be tested far more quickly because smaller events are considerably more frequent. Also, our previous method used the focal mechanisms of past earthquakes to estimate the preferred directions of earthquake clustering, however the method made assumptions that generally hold in subduction zones only. The new approach escapes those assumptions. In the northwest Pacific the new method gives estimated earthquake rate density very similar to that of the previous forecast.  相似文献   
910.
Recently the equilibrium property of ergodicity was identified in an earthquake fault system (Tiampo et al., Phys. Rev. Lett. 91, 238501, 2003; Phys. Rev. E 75, 066107, 2007). Ergodicity in this context not only requires that the system is stationary for these networks at the applicable spatial and temporal scales, but also implies that they are in a state of metastable equilibrium, one in which the ensemble averages can be substituted for temporal averages when studying their behavior in space and time. In this work we show that this property can be used to identify those regions of parameter space which are stationary when applied to the seismicity of two naturally-occurring earthquake fault networks. We apply this measure to one particular seismicity-based forecasting tool, the Pattern Informatics index (Tiampo et al., Europhys. Lett. 60, 481–487, 2002; Rundle et al., Proc. National Acad. Sci., U.S.A., Suppl. 1, 99, 2463, 2002), in order to test the hypothesis that the identification of ergodic regions can be used to improve and optimize forecasts that rely on historic seismicity catalogs. We also apply the same measure to synthetic catalogs in order to better understand the physical process that affects this accuracy. We show that, in particular, ergodic regions defined by magnitude and time period provide more reliable forecasts of future events in both natural and synthetic catalogs, and that these improvements can be directly related to specific features or properties of the catalogs that impact the behavior of their spatial and temporal statistics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号