首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   4篇
测绘学   5篇
大气科学   15篇
地球物理   41篇
地质学   85篇
海洋学   15篇
天文学   4篇
综合类   5篇
自然地理   6篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   7篇
  2018年   7篇
  2017年   5篇
  2016年   6篇
  2015年   7篇
  2014年   10篇
  2013年   15篇
  2012年   5篇
  2011年   11篇
  2010年   4篇
  2009年   12篇
  2008年   8篇
  2007年   7篇
  2006年   11篇
  2005年   6篇
  2004年   7篇
  2003年   6篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1976年   1篇
排序方式: 共有176条查询结果,搜索用时 15 毫秒
91.
The effects of the 2004 tsunami on a coastal aquifer in Sri Lanka   总被引:1,自引:0,他引:1  
On December 26, 2004, the earthquake off the southern coast of Sumatra in the Indian Ocean generated far-reaching tsunami waves, resulting in severe disruption of the coastal aquifers in many countries of the region. The objective of this study was to examine the impact of the tsunami on groundwater in coastal areas. Field investigations on the east coast of Sri Lanka were carried out along a transect located perpendicular to the coastline on a 2.4 km wide sand stretch bounded by the sea and a lagoon. Measurements of groundwater table elevation and electrical conductivity (EC) of the groundwater were carried out monthly from October 2005 to August 2007. The aquifer system and tsunami saltwater intrusion were modeled using the variable-density flow and solute transport code HST3D to understand the tsunami plume behavior and estimate the aquifer recovery time. EC values reduced as a result of the monsoonal rainfall following the tsunami with a decline in reduction rate during the dry season. The upper part of the saturated zone (down to 2.5 m) returned to freshwater conditions (EC < 1000 μS/cm) 1 to 1.5 years after the tsunami, according to field observations. On the basis of model simulations, it may take more than 15 years for the entire aquifer (down to 28 m) to recover completely, although the top 6 m of the aquifer may become fresh in about 5 years.  相似文献   
92.
Simulating Martian regolith in the laboratory   总被引:1,自引:0,他引:1  
Regolith and dust cover the surfaces of the Solar Systems solid bodies, and thus constitute the visible surface of these objects. The topmost layers also interact with space or the atmosphere in the case of Mars, Venus and Titan. Surface probes have been proposed, studied and flown to some of these worlds. Landers and some of the mechanisms they carry, e.g. sampling devices, drills and subsurface probes (“moles”) will interact with the porous surface layer. The absence of true extraterrestrial test materials in ample quantities restricts experiments to the use of soil or regolith analogue materials. Several standardized soil simulants have been developed and produced and are commonly used for a variety of laboratory experiments. In this paper we intend to give an overview of some of the most important soil simulants, and describe experiments (penetrometry, thermal conductivity, aeolian transport, goniometry, spectroscopy and exobiology) made in various European laboratory facilities.  相似文献   
93.
94.
The ion microprobe at Johnson Space Center has been calibrated for in situ water determinations on a 10-μm scale over the range 0.2 wt.% H2O to 1.8, 6.8, and 3.7 wt.%, for basaltic, albitic, and rhyolitic glasses, respectively. The basalt glass calibration curve differs substantially from those of albite and rhyolite glasses, indicating a need to carefully match composition and/or melt structure between H2O standards and unknowns.A value for the diffusivity of water as a function of concentration and time has been calculated from water diffusion profiles measured in rhyolite glasses prepared at 850°C and 700 barsPt(H2O) [1]. Transient diffusion into a semi-infinite medium is described by the equation:?(φ/2)?¸/?φ=?(Dw?¸/?φ)/?φ #x003B8;=1, φ=0, θ→ 0, θ→∞, wherex =distance from the cylinder edge,t =time,C0 =initial concentration,Cs =concentration at the edge,C =concentration at x,θ = C ? C0/Cs ? C0,φ = x/t1/2, andDw =diffusivity of water. An iterative technique has been used to calculate solutions to the diffusion equation as a function ofDw [2]. Comparison of these solutions with the ion probe data indicate that, for0.2wt.% ≤ C ≤ 3.7wt.%H2O,Dw can be described by an exponential function of θ, of the formDw = D0exp(bθ), withD0 (i.e.,Dw at 0.2%) = (0.8?2.2) × 10?8 cm2/s and2 ≤ b ≤ 4.  相似文献   
95.
The temperature dependence of water diffusivity in rhyolite melts over the range 650–950°C and [PT(H2O] = 700 bars is evaluated from water concentration-distance profiles measured in glass with an ion microprobe. Diffusivities are exponentially dependent on concentration over this temperature range and vary from about 10?8 cm2/s at 650°C to about 10?7 cm2/s at 950°C at 2 wt.% water. Water solubility also varies with temperature at a rate of ?0.14 wt. per 100°C increase. The avtivation energy (Ea) appears to be constant at 19 ± 1kal/mole for 1, 2,and 3 wt.% H2O. Comparison of these data with results for cation diffusion indicates that this value is a minimum Ea for diffusion of any species in a rhyolite melt.Compensation plots of log10D0 (the frequency factor) versus Ea indicate that hydrous rhyolite melts follow the same trend as anhydrous basalts. D0 increases for H2O and Ca2+ [1] as Ea decreases. This suggests that these molecules may diffuse by different mechanisms than do monovalent cations, and that hydration of the melt affects diffusion of Ca2+ and H2O differently than it does monovalent cation diffusion. The results imply that dramatic increases in cation diffusivities by hydration [1] may occur with additions of less than 1 wt.% H2O.  相似文献   
96.
Deformation of synthetic calcite–anhydrite aggregates to large shear strains (up to γ = 12.4 at 600 °C, 300 MPa confining pressure and a constant angular displacement rate corresponding to a shear strain rate of 10− 3 s− 1) resulted in the first experimental observation of strain localisation from initially homogeneous rocks. In contrast to experiments on pure calcite and anhydrite, which deformed homogeneously to large strains (γ ≥ 5), all experiments on calcite–anhydrite mixtures resulted in heterogeneous deformation at γ > 1 and the formation of narrow localised bands in the microstructures at γ > 4. In these bands, the amount of strain is at least twice as large as in the rest of the sample and individual grains of the same phase cluster and align, thereby forming microstructural layering similar to planar fabrics in natural mylonites. A switch in deformation mechanism in anhydrite from dislocation creep to diffusion creep and/or grain boundary sliding occurs simultaneously with strain localisation. It is concluded that deformation-induced heterogeneous phase distributions cause local strength differences initiating strain localisation in the calcite–anhydrite mixtures. The study suggests that the presence of two phases in combination with a change in deformation mechanism may be responsible for strain localisation in natural poly-mineralic mylonites.  相似文献   
97.
Inelastic magnetic neutron scattering has been used to determine the energy of the 4 A 24 T 2 transition in CoAl2O4 spinel and the δ1 transition in Co2[Al4Si5]O18 cordierite. The observed crystal field splitting in Co-spinel is 485 meV (3900 cm−1), which corresponds to a crystal field stabilization energy of 56.2 kJmol−1. The transition energy of the δ1 transition in Co-cordierite has been determined to be 21 meV (170 cm−1). The present data demonstrate that magnetic neutron scattering can be used to measure crystal field transitions at energies of interest in the study of 3d-containing silicates. It may be used to measure transition energies when the use of optical spectroscopy is inappropriate. Received: 30 January 1997 / Accepted: 5 July 1997  相似文献   
98.
99.
Changes of the summer evapotranspiration regime under increased levels of atmospheric greenhouse gases are discussed for three Alpine river basins on the basis of a new set of simulations carried out with a high-resolution hydrological model. The climate change signal was inferred from the output of two simulations with a state-of-the-art global climate model (GCM), a reference run valid for 1961–1990 and a time-slice simulation valid for 2071–2100 under forcing from the A2 IPCC emission scenario. In this particular GCM experiment and with respect to the Alpine region summer temperature was found to increase by 3 to 4 C, whereas precipitation was found to decrease by 10 to 20%. Global radiation and water vapor pressure deficit were found to increase by about 5% and 2 hPa, respectively. On this background, an overall increase of potential evapotranspiration of about 20% relative to the baseline was predicted by the hydrological model, with important variations between but also within individual basins. The results of the hydrological simulations also revealed a reduction in the evapotranspiration efficiency that depends on altitude. Accordingly, actual evapotranspiration was found to increase at high altitudes and to the south of the Alps, but to decrease in low elevation areas of the northern forelands and in the inner-Alpine domain. Such a differentiation does not appear in the GCM scenario, which predicts an overall increase in evapotranspiration over the Alps. This underlines the importance of detailed simulations for the quantitative assessment of the regional impact of climate change on the hydrological cycle.  相似文献   
100.
Four different conceptual models based on alternative geological interpretations were formulated for a shallow 600 km2 aquifer system in Denmark comprising Quaternary deposits. Each of the four models was calibrated against groundwater heads and discharge measurements through inverse modeling. Subsequently, the transport capabilities of the four models were compared to 32 concentration measurements of environmental tracers (tritium 3H, helium-3 3He, chlorofluorocarbons CFC11, CFC12 and CFC113). The flow simulations showed only minor differences in spatial head distribution associated with alternative conceptualizations despite the complexity of the aquifer system and the significant differences in geological interpretations. The models, however, showed major differences in predictions of the age of the groundwater and environmental tracer concentrations, differences that are seen as an effect of model structure uncertainty, because no additional calibrations to these data were performed. A single conceptualization may be adequate in characterizing the natural behavior of a field system after calibration, because the calibration procedure is able to compensate for errors in the data or in the conceptual model through biased parameter values. However, once extrapolation beyond the calibration base is attempted, different conceptual model formulations result in significantly different results. Consequently, it is crucial to take model conceptual uncertainty into account when making predictions beyond the calibration base.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号