首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1231篇
  免费   60篇
  国内免费   6篇
测绘学   27篇
大气科学   148篇
地球物理   285篇
地质学   470篇
海洋学   88篇
天文学   168篇
综合类   17篇
自然地理   94篇
  2021年   14篇
  2020年   17篇
  2019年   14篇
  2018年   35篇
  2017年   18篇
  2016年   42篇
  2015年   27篇
  2014年   42篇
  2013年   68篇
  2012年   56篇
  2011年   56篇
  2010年   46篇
  2009年   68篇
  2008年   67篇
  2007年   51篇
  2006年   55篇
  2005年   52篇
  2004年   38篇
  2003年   33篇
  2002年   30篇
  2001年   31篇
  2000年   12篇
  1999年   18篇
  1998年   16篇
  1997年   9篇
  1996年   12篇
  1995年   9篇
  1994年   14篇
  1993年   9篇
  1991年   16篇
  1990年   9篇
  1989年   11篇
  1988年   11篇
  1987年   9篇
  1986年   9篇
  1984年   8篇
  1983年   11篇
  1982年   12篇
  1981年   10篇
  1980年   10篇
  1977年   12篇
  1974年   8篇
  1972年   11篇
  1970年   9篇
  1968年   7篇
  1967年   7篇
  1955年   8篇
  1954年   10篇
  1950年   8篇
  1948年   8篇
排序方式: 共有1297条查询结果,搜索用时 437 毫秒
81.
82.
The mechanical denudation rates of 81 large lake basins (lake area > 500 km2) were determined from long-term river loads and erosion maps. Using the drainage area/lake area ratios the mean sedimentation rates of the lakes were calculated for a porosity of 0.3. The mean sedimentation rates of different lake types vary between 0.1 mm/a (glacial lakes, lowland) and 5.4 mm/a (mostly sag basin lakes). The calculated lifetimes of the lakes are based on the lake volumes and mean sedimentation rates, assuming steady-state conditions and solely clastic material. On average, glacial lakes in highlands and fault-related lakes show the shortest lifetimes (c. 70 ka), glacial lakes in lowlands and rift lakes have the longest lifetimes (c. 1 Ma). Some lakes remain unfilled for very long time spans due to rapid subsidence of their basin floors. The calculated lifetimes are compared with those derived from sediment core studies. Most core studies indicate lower mechanical sedimentation rates than the calculated ones because a major part of the incoming sediment is trapped in deltas. However, a number of lakes (e.g., the Great Lakes of North America) show the opposite tendency which is largely caused by extensive shoreline erosion and resuspension. The lifetimes of large glacial lakes often exceed the duration of interglacials. Hence, their lifetimes are restricted by glaciation and not by sediment infill. Rift lakes persist for long time periods which exceed the calculated lifetimes in some cases. Time-dependent subsidence, basin extension, as well as the impact of climate change are briefly described.  相似文献   
83.
84.
Although the physics of evaporation within the inner region of the boundary layer is believed to be well understood, observations of mass-energy exchange processes have been hindered by the limitations of point sensors. A combination of point sensors and active remote sensing, namely, water-Raman Lidar measurements, offers new opportunities to study relatively large areas at temporal and spatial scales previously unattainable. Results from experiments over uniform canopies both confirm some traditional theories and challenge some of the underlying assumptions concerning the homogeneity of the surface-atmosphere interface and the use of point sensors to characterize large areas.This work was performed under the auspices of the U.S. Department of Energy. The authors would like to thank F. Archuleta, J. Archuleta, F. Barnes, W. Clements, K. Muller and W. Porch of LANL, R. Whitis of USDA, R. Jackson and P. Pinter of USDA-WCL, and L. Balick of EG&G for their invaluable time and support.  相似文献   
85.
Glacial isostatic uplift of Tibet as a consequence of a former ice sheet   总被引:3,自引:0,他引:3  
Matthias Kuhle 《GeoJournal》1995,37(4):431-449
  相似文献   
86.
Comparison of eolian transport during five high-velocity wind events over a 29 day period on a narrow estuarine beach in Delaware Bay, New Jersey, USA, reveals the temporal variability of transport, due to changes in direction of wind approach. Mean wind speed measured 6 m above the dune crest for the five events ranged from 8·5 to 15·9 ms?1. Mean wind direction was oblique to the shoreline (63° from shore-normal) during one event but was within 14° of shore-normal during the other events. Eolian transport is greatest during low tide and rising tide, when the beach source area is widest and when drying of surface sediments occurs. The quantity of sediment caught in a vertical trap for the five events varied from a total of 0·07 to 113·73 kgm?1. Differences in temperature, relative humidity and moisture and salt content of surficial sediments were slight. Mean grain sizes ranged from 0·33 to 0·58 mm, causing slight differences in threshold shear velocity, but shear velocities exceeded the threshold required for transport during all events. Beach width, measured normal to the shoreline, varied from 15·5 to 18·0 m; beach slope differed by 0·5°. The oblique wind during one event created a source width nearly double the width during other days. Beach slope, measured in the direction of the wind, was less than half as steep as the slope measured normal to the shoreline. The amount of sand trapped during the oblique wind was over 20 times greater than any other event, even those with higher shear velocities. The ability of the beach surface to supply grains to the air stream is limited on narrow beaches, but increased source width, due to oblique wind approach, can partially overcome limitations of surface conditions on the beach.  相似文献   
87.
88.
Zusammenfassung Bei der Sedimentbildung im Flachmeer wird zwischen Kurzschweb (KS) im oberen durchbewegten Teil des Meeres und Langschweb (LS) des ruhigen Wassers unterschieden. Deren Grenze liegt je nach der Windwirkung zwischen 2,5 und 250 m Tiefe. Wechsel in der Größe klastischer Körner weist auf Änderung der Wasserbewegung, solcher des Kalkgehalts auf Klimaänderung hin.Bei sinkendem Meeresboden gibt es im KS-Bereich stets eine Zone, in der kontinuierlich so viel Sediment angehäuft wird, wie die Senkung beträgt. Da ohne Senkung der Absatz weiter verfrachtet würde, verdankt dies Sediment seine Entstehung der Senkung. Solch desidiertes Sediment wächst, bei gleichbleibender Tiefe des Wassers, nach unten, im Gegensatz zum ascendenten Sediment.Wo im KS-Bereich das Ausmaß von Senkung und Anhäufung gleich ist, entstehen erdgeschichtlich volldokumentäre Sedimente. Je schneller die Senkung, desto reicher und lesbarer der Inhalt. Im übrigen Teil des KS-Bereichs bedingen zahlreiche Unterbrechungen des Absatzes ein teildokumentäres Sediment. Im LS-Niederschlag fallen jene erdgeschichtlichen Ereignisse aus, die durch Wasserbewegung erkennbar werden. Da Bodenbewohner und Verdichtung die primäre Schichtung zerstören, bleibt ein erdgeschichtlich grobdokumentäres Sediment.Cyklische Sedimente entsprechen den volldokumentären.Aus den Sedimentations-Bedingungen in Ostsee, Nordsee, Mittelmeer und Golf de Gascogne werden zunächst Gesetzmäßigkeiten der Sediment-Bildung in der Flachsee abgeleitet. Daran anschließend soll versucht werden, fossile Flachsee-Ablagerungen zu deuten.Das Schrifttum, soweit nicht im Geologischen Institut Kiel vorhanden, durfte ich dankenswerterweise einsehen in den Büchereien des Instituts für Meereskunde Kiel und des Deutschen Hydrographischen Instituts Hamburg. Herrn Dr.Jarke vom letztgenannten Institut bin ich für Gedanken-Austausch und Hinweise zu besonderem Dank verpflichtet.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号