首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   707篇
  免费   19篇
  国内免费   2篇
测绘学   12篇
大气科学   78篇
地球物理   167篇
地质学   271篇
海洋学   57篇
天文学   86篇
综合类   3篇
自然地理   54篇
  2021年   7篇
  2020年   7篇
  2018年   11篇
  2016年   12篇
  2014年   17篇
  2013年   26篇
  2012年   20篇
  2011年   20篇
  2010年   13篇
  2009年   29篇
  2008年   30篇
  2007年   24篇
  2006年   31篇
  2005年   23篇
  2004年   22篇
  2003年   17篇
  2002年   22篇
  2001年   19篇
  2000年   7篇
  1999年   15篇
  1998年   10篇
  1997年   10篇
  1996年   7篇
  1995年   7篇
  1994年   9篇
  1993年   9篇
  1992年   8篇
  1991年   10篇
  1987年   8篇
  1985年   5篇
  1984年   8篇
  1983年   11篇
  1982年   10篇
  1981年   7篇
  1980年   8篇
  1978年   8篇
  1977年   12篇
  1976年   7篇
  1975年   7篇
  1974年   9篇
  1972年   11篇
  1970年   7篇
  1968年   6篇
  1964年   5篇
  1959年   5篇
  1955年   7篇
  1954年   9篇
  1952年   6篇
  1950年   8篇
  1948年   8篇
排序方式: 共有728条查询结果,搜索用时 203 毫秒
371.
Mass wasting evidence is common along the margins of the Columbia River Basalts. I identified, mapped, dated, and assessed the environment of nearly 160 discrete slope failures (excluding rockfall) along the margins of the Columbia River Basalts in the Swauk watershed of central Washington. Rotational slides, translational slides, flows, and complex slide-flows were identified via topographic map, airphoto, and field analysis. Geographic information systems analysis revealed that these features cover 38% of the watershed. Translational slides are the most numerous of the slope failures, whereas complex slide-flows cover the most area. I placed each slope failure into a relative age category (active, inactive-young, inactive mature, and inactive-old) based on the characteristics of the main scarp, lateral flanks, internal morphology, vegetation cover, and toe relationships. Most Swauk watershed slope failures are inactive-mature. Organic sediments from an inactive-mature sag pond formed ~6880 14C yr BP, whereas inactive-young sediments dated at ~5930 14C yr BP. Inactive slope failures are often associated with steep slopes, inclined beds, incompetent geologic units, or streamcuts. Streamcuts, roadcuts, or clearcuts typically accompany active slope failures. Rain-on-snow events and associated mass wasting in winter 1996 provide a plausible trigger analog for inactive mass wasting. Rockfall deposits cover ~29% of the watershed, range from inactive to active in age, and occur atop pre-existing slope failures in well-jointed Columbia River Basalts. Mass wasting has played a key role in shaping the topographic and hydrologic patterns of the watershed. [Key words: mass wasting, watershed, Washington state, Columbia River Basalts, rain-onsnow.]  相似文献   
372.
Oceanographic climatology is normally estimated by dividing the world’s oceans into geographical boxes of fixed shape and size, where each box is represented by a climatological salinity and temperature profile. The climatological profile is typically an average of historical measurements from that region. Since an arbitrarily chosen box may contain different types of water masses both in space and time, an averaged profile may be a statistically improbable or even non-physical representation. This paper proposes a new approach that employs empirical orthogonal functions in combination with a clustering technique to divide the world’s oceans into climatological regions. Each region is represented by a cluster that is determined by minimising the variance of the state variables within each cluster. All profiles contained in a cluster are statistically similar to each other and statistically different from profiles in other clusters. Each cluster is then represented by mean temperature and salinity profiles and a mean position. Methods for estimating climatological profiles from the cluster information are examined, and their performances are compared to a conventional method of estimating climatology. The comparisons show that the new methods outperform conventional methods and are particularly effective in areas where oceanographic fronts are present.  相似文献   
373.
374.
Land‐use change is one of the main drivers of watershed hydrology change. The effect of forestry related land‐use changes (e.g. afforestation, deforestation, agroforestry) on water fluxes depends on climate, watershed characteristics and spatial scale. The Soil and Water Assessment Tool (SWAT) model was calibrated, validated and used to simulate the impact of agroforestry on the water balance in the Mara River Basin (MRB) in East Africa. Model performance was assessed by Nash–Sutcliffe Efficiency (NSE) and Kling–Gupta Efficiency (KGE). The NSE (and KGE) values for calibration and validation were: 0.77 (0.88) and 0.74 (0.85) for the Nyangores sub‐watershed, and 0.78 (0.89) and 0.79 (0.63) for the entire MRB. It was found that agroforestry in the watershed would generally reduce surface runoff, mainly because of enhanced infiltration. However, it would also increase evapotranspiration and consequently reduce baseflow and overall water yield, which was attributed to increased water use by trees. Spatial scale was found to have a significant effect on water balance; the impact of agroforestry was higher at the smaller headwater catchment (Nyangores) than for the larger watershed (entire MRB). However, the rate of change in water yield with an increase in area under agroforestry was different for the two and could be attributed to the spatial variability of climate within the MRB. Our results suggest that direct extrapolation of the findings from a small sub‐catchment to a larger watershed may not always be accurate. These findings could guide watershed managers on the level of trade‐offs that might occur between reduced water yields and other benefits (e.g. soil erosion control, improved soil productivity) offered by agroforestry. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
375.
Wildfires in the sub‐alpine belt of the Austrian Limestone Alps sometimes cause severe vegetation and soil destruction with increased danger of secondary natural hazards such as avalanches and debris flows. Some of the affected areas remain degraded to rocky slopes even decades after the fire, raising the question as to whether the ecosystems will ever be able to recover. The mean fire interval, the duration of recovery and the role of geomorphic processes for vegetation regeneration are so far unknown. These questions were tackled in a broad research approach including investigation of historical archives to determine the frequency of historical wildfires, mapping vegetation regeneration on 20 slopes of different post‐fire ages, and soil erosion measurements on two slopes. To date, > 450 historical wildfires have been located in the study area. The mean fire interval per square kilometre is c. 750 years, but can be as low as 200–500 years on south‐facing slopes. Vegetation regeneration takes an extremely long time under unfavourable conditions; the typical window of disturbance is between 50 and 500 years, which is far longer than in any other wildfire study known to us. Soil erosion constantly increases in the years after the fires and the elevated intensity can be maintained for decades. A two‐part vegetation regeneration model is proposed depending upon the degree of soil loss. In the case of moderate soil erosion, spreading grassland communities can slow down shrub re‐colonization. In contrast, after severe soil destruction the slopes may remain degraded for a century or longer, before rather rapid regeneration occurs. The reasons are not fully understood but are probably governed by geomorphic process intensity. The interdependence of vegetation regeneration and geomorphic processes is a paradigm of ecology–geomorphology interaction, and is a unique example of a very long‐lasting disturbance response caused by wildfire in a non‐resilient ecosystem. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
376.
In recent years, the measurement of rotational components of earthquake-induced ground motion became a reality due to high-resolution ring laser gyroscopes. As a consequence of the fact that they exploit the Sagnac effect, these devices are entirely insensitive to translational motion and are able to measure the rotation rate with high linearity and accuracy over a wide frequency band. During the last decade, a substantial number of earthquakes were recorded by the large ring lasers located in Germany, New Zealand, and USA, and the subsequent data analysis demonstrated reliability and consistency of the results with respect to theoretical models. However, most of the observations recorded teleseismic events in the far-field. The substantial mass and the size of these active interferometers make their near-field application difficult. Therefore, the passive counterparts of ring lasers, the fiber optic gyros can be used for seismic applications where the mobility is more important than extreme precision. These sensors provide reasonable accuracy and are small in size, which makes them perfect candidates for strong motion applications. The other advantage of fiber optic gyroscopes is that if the earthquake is local and shallow (like one occurred early this year at Canterbury, New Zealand), the large ring lasers simply do not have the dynamic range??the effect is far too large for these instruments. In this paper, we analyze a typical commercially available tactical grade fiber optic gyroscope (VG-951) with respect to the seismic rotation measurement requirements. The initial test results including translation and upper bounds of seismic rotation sensitivity are presented. The advantages and limitations of tactical grade fiber optic gyroscope as seismic rotation sensor are discussed.  相似文献   
377.
This study evaluated the relationship between concentrations of operationally defined potentially bioavailable organic ‐carbon (PBOC) and hydrolyzable amino acids (HAAs) in sediments collected from a diverse range of chloroethene‐‐contaminated sites. Concentrations of PBOC and HAA were measured using aquifer sediment samples collected at six selected study sites. Average concentrations of total HAA and PBOC ranged from 1.96 ± 1.53 to 20.1 ± 25.6 mg/kg and 4.72 ± 0.72 to 443 ± 65.4 mg/kg, respectively. Results demonstrated a statistically significant positive relationship between concentrations of PBOC and total HAA present in the aquifer sediment (p < 0.05). Higher levels of HAA were consistently observed at sites with greater levels of PBOC and first‐order decay rates. Because amino acids are known to be readily biodegradable carbon compounds, this relationship suggests that the sequential chemical extraction procedure used to measure PBOC is a useful indicator of bioavailable carbon in aquifer sediments. This, in turn, is consistent with the interpretation that PBOC measurements can be used for estimating the amount of natural organic carbon available for driving the reductive dechlorination of chloroethenes in groundwater systems.  相似文献   
378.
Sonar performance modeling is crucial for submarine and anti–submarine operations. The validity of sonar performance models is generally limited by environmental uncertainty, and particularly uncertainty in the vertical sound speed profile (SSP). Rapid environmental assessment (REA) products, such as oceanographic surveys and ocean models may be used to reduce this uncertainty prior to sonar operations. Empirical orthogonal functions (EOF) applied on the SSPs inherently take into account the vertical gradients and therefore the acoustic properties. We present a method that employs EOFs and a grouping algorithm to divide a large group of SSPs from an ocean model simulation into smaller groups with similar SSP characteristics. Such groups are henceforth called acoustically stable groups. Each group represents a subset in space and time within the ocean model domain. Regions with low acoustic variability contain large and geographically contiguous acoustically stable groups. In contrast, small or fragmented acoustically stable groups are found in regions with high acoustic variability. The main output is a map of the group distribution. This is a REA product in itself, but the map may also be used as a planning aid for REA survey missions.  相似文献   
379.
380.
Geologic carbon sequestration (GCS) is being considered as a climate change mitigation option in many future energy scenarios. Mathematical modeling is routinely used to predict subsurface CO2 and resident brine migration for the design of injection operations, to demonstrate the permanence of CO2 storage, and to show that other subsurface resources will not be degraded. Many processes impact the migration of CO2 and brine, including multiphase flow dynamics, geochemistry, and geomechanics, along with the spatial distribution of parameters such as porosity and permeability. In this article, we review a set of multiphase modeling approaches with different levels of conceptual complexity that have been used to model GCS. Model complexity ranges from coupled multiprocess models to simplified vertical equilibrium (VE) models and macroscopic invasion percolation models. The goal of this article is to give a framework of conceptual model complexity, and to show the types of modeling approaches that have been used to address specific GCS questions. Application of the modeling approaches is shown using five ongoing or proposed CO2 injection sites. For the selected sites, the majority of GCS models follow a simplified multiphase approach, especially for questions related to injection and local‐scale heterogeneity. Coupled multiprocess models are only applied in one case where geomechanics have a strong impact on the flow. Owing to their computational efficiency, VE models tend to be applied at large scales. A macroscopic invasion percolation approach was used to predict the CO2 migration at one site to examine details of CO2 migration under the caprock.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号