首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
地球物理   16篇
地质学   8篇
海洋学   1篇
  2008年   2篇
  2006年   3篇
  2004年   3篇
  2003年   1篇
  1999年   1篇
  1993年   1篇
  1992年   3篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1984年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
排序方式: 共有25条查询结果,搜索用时 0 毫秒
21.
The fluxes of planktonic foraminifera (calcareous shell producing zooplankton) were examined in order to clarify temporal and regional variations in production in the upper ocean in relation to hydrographic conditions. Three time-series sediment traps were deployed in the central North Pacific along 175°E for about one year, beginning in June 1993. Trap sites were located in the subarctic, the transition, and the subtropical water masses, from north to south. The southernmost site was under the influence of the transition zone in January to May. Both temporal and regional fluxes of planktonic foraminifera showed large variations during the experiment. In the subarctic water mass, high total foraminiferal fluxes (TFFs) and high organic matter fluxes (OMFs) were observed during summer to fall, suggesting that food availability is the most important factor for the production of planktonic foraminifera. Furthermore, low TFFs during winter were ascribed to low food availability and low temperatures. The OMFs and TFFs correlated well and increased rapidly after the disruption of the seasonal thermocline during winter, peaking in late February to early March in the transition zone. In the subtropical water mass, both OMFs and TFFs remained low due to lower productivity under oligotrophic conditions. In general, TFFs show a positive correlation with OMFs during the trap experiment, suggesting that food availability is one of the factors controlling the production of planktonic foraminifera in the central North Pacific. Relatively low TFFs during summer to fall in the subtropical water mass may be caused by the thermal structure of the upper ocean. Low SST possibly reduces the production of foraminifera during winter in the subarctic region.  相似文献   
22.
Masaaki  Okuda  Hiroomi  Nakazato  Norio  Miyoshi  Takeshi  Nakagawa  Hiroko  Okazaki  Saneatsu  Saito  Asahiko  Taira 《Island Arc》2006,15(3):338-354
Abstract   The 250-m Choshi core (CHOSHI-1), drilled from hemipelagic muds of the Inubo Group, has been physically, geochemically and tephrochronologically analyzed back to 1 Ma. We provide pollen results for the 19–169 m section of the core (400–780 ka) bracketed by the marker tephra Ty1 (equivalent to J4) and the Brunhes–Matuyama paleomagnetic boundary. The results show good agreement with the corresponding oxygen isotope (δ18O) profile, with high δ18O intervals dominated by boreal conifers Picea , Abies , Pinus (subgen. Haploxylon ) and Tsuga ( diversifolia ), whereas low δ18O intervals are dominated by temperate conifers Cryptomeria , Taxaceae-Cephalotaxaceae-Cupressaceae and Sciadopitys . In order to confirm pollen-climate relations for the relevant taxa, a modern surface pollen dataset for the Japanese archipelago was consulted. In this analysis, the ratios of Cryptomeria / Picea and temperate/boreal conifers serve as proxies for the 100-kyr glacial/interglacial cycle during the Middle Pleistocene. Distinct signals for marine isotope stages (MIS) 11, 12, 13–15, 16, 17 and 18–19 are recognized in accordance with the tephrochronology and δ18O of the same core. Application of the criteria to an independent pollen record from Lake Biwa provides an integrated pollen stratigraphy for mid-latitude Japan during the past 800 ky. Some degree of uncertainty remains in the chronology of the MIS13–15 interval, relating to the uncertainty in the eruption age of widespread tephra Ks11.  相似文献   
23.
A seismic refraction–reflection experiment using ocean bottom seismometers and a tuned airgun array was conducted around the Solomon Island Arc to investigate the fate of an oceanic plateau adjacent to a subduction zone. Here, the Ontong Java Plateau is converging from north with the Solomon Island Arc as part of the Pacific Plate. According to our two-dimensional P-wave velocity structure modeling, the thickness of the Ontong Java Plateau is about 33 km including a thick (15 km) high-velocity layer (7.2 km/s). The thick crust of the Ontong Java Plateau still persists below the Malaita Accreted Province. We interpreted that the shallow part of the Ontong Java Plateau is accreted in front of the Solomon Island Arc as the Malaita Accreted Province and the North Solomon Trench are not a subduction zone but a deformation front of accreted materials. The subduction of the India–Australia Plate from the south at the San Cristobal Trench is confirmed to a depth of about 20 km below sea level. Seismicity around our survey area shows shallow (about 50 km) hypocenters from the San Cristobal Trench and deep (about 200 km) hypocenters from the other side of the Solomon Island Arc. No earthquakes occurred around the North Solomon Trench. The deep seismicity and our velocity model suggest that the lower part of the Ontong Java Plateau is subducting. After the oceanic plateau closes in on the arc, the upper part of the oceanic plateau is accreted with the arc and the lower part is subducted below the arc. The estimation of crustal bulk composition from the velocity model indicates that the upper portion and the total of the Solomon Island Arc are SiO2 58% and 53%, respectively, which is almost same as that of the Izu–Bonin Arc. This means that the Solomon Island Arc can be a contributor to growing continental crust. The bulk composition of the Ontong Java Plateau is SiO2 49–50%, which is meaningfully lower than those of continents. The accreted province in front of the arc is growing with the convergence of the two plates, and this accretion of the upper part of the oceanic plateau may be another process of crustal growth, although the proportion of such contribution is not clear.  相似文献   
24.
Abstract Seismic reflections across the accretionary prism of the North Sulawesi provide excellent images of the various structural domains landward of the frontal thrust. The structural domain in the accretionary prism area of the North Sulawesi Trench can be divided into four zones: (i) trench area; (ii) Zone A; (iii) Zone B; and (iv) Zone C. Zone A is an active imbrication zone where a decollement is well imaged. Zone B is dominated by out‐of‐sequence thrusts and small slope basins. Zone C is structurally high in the forearc basin, overlain by a thick sedimentary sequence. The subducted and accreted sedimentary packages are separated by the decollement. Topography of the oceanic basement is rough, both in the basin and beneath the wedge. The accretionary prism along the North Sulawesi Trench grew because of the collision between eastern Sulawesi and the Bangai–Sula microcontinent along the Sorong Fault in the middle Miocene. This collision produced a large rotation of the north arm of Sulawesi Island. Rotation and northward movement of the north arm of Sulawesi may have resulted in southward subduction and development of the accretionary wedge along North Sulawesi. Lateral variations are wider in the western areas relative to the eastern areas. This is due to greater convergence rates in the western area: 5 km/My for the west and 1.5 km/My for the east. An accretionary prism model indicates that the initiation of growth of the accretionary prism in the North Sulawesi Trench occurred approximately 5 Ma. A comparison between the North Sulawesi accretionary prism and the Nankai accretionary prism of Japan reveals similar internal structures, suggesting similar mechanical processes and structural evolution.  相似文献   
25.
Toshihiro  Ike  Gregory F.  Moore  Shin'ichi  Kuramoto  Jin-Oh  Park  Yoshiyuki  Kaneda  Asahiko  Taira 《Island Arc》2008,17(3):342-357
Abstract   We documented regional and local variations in basement relief, sediment thickness, and sediment type in the Shikoku Basin, northern Philippine Sea Plate, which is subducting at the Nankai Trough. Seismic reflection data, tied with ocean drilling program drill cores, reveal that variations in the incoming sediment sequences are correlated with basement topography. We mapped the three-dimensional seismic facies distribution and measured representative seismic sequences and units. Trench-parallel seismic profiles show three regional provinces in the Shikoku Basin that are distinguished by the magnitude of basement relief and sediment thickness: Western (<200–400 m basement relief, >600 m sediment thickness), Central (>1500 m relief, ∼2000 m sediments), and Eastern (<600 m relief, ∼1200 m sediments) provinces. The total thickness of sediment in basement lows is as much as six times greater than that over basement highs. Turbidite sedimentation in the Shikoku Basin reflects basement control on deposition, leading to the local presence or absence of turbidite units deposited during the middle Oligocene to the middle Miocene. During the first phase of sedimentation, most basement lows were filled with turbidites, resulting in smooth seafloor morphology that does not reflect basement relief. A second phase of turbidite deposition in the Eastern Province was accompanied by significant amounts of hemipelagic sediments interbedded with turbidite layers compared to the other provinces because of its close proximity to the Izu–Bonin Island Arc. Both regional and local variations in basement topography and sediment thickness/type have caused lateral heterogeneities on the underthrusting plate that will, in turn, influence lateral fluid flow along the Nankai accretionary prism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号