首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   544篇
  免费   19篇
  国内免费   1篇
测绘学   9篇
大气科学   53篇
地球物理   111篇
地质学   204篇
海洋学   60篇
天文学   60篇
综合类   1篇
自然地理   66篇
  2024年   2篇
  2022年   2篇
  2021年   5篇
  2020年   5篇
  2019年   13篇
  2018年   15篇
  2017年   15篇
  2016年   19篇
  2015年   19篇
  2014年   31篇
  2013年   43篇
  2012年   31篇
  2011年   33篇
  2010年   38篇
  2009年   22篇
  2008年   31篇
  2007年   26篇
  2006年   25篇
  2005年   27篇
  2004年   17篇
  2003年   15篇
  2002年   17篇
  2001年   9篇
  2000年   10篇
  1999年   9篇
  1998年   4篇
  1997年   8篇
  1996年   4篇
  1995年   7篇
  1994年   4篇
  1993年   7篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1988年   2篇
  1986年   1篇
  1985年   9篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1981年   4篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1971年   1篇
  1934年   1篇
排序方式: 共有564条查询结果,搜索用时 0 毫秒
141.
As defined by the National Oil and Hazardous Substances Pollution Contingency Plan (NCP), a surface washing agent (SWA) is a product that removes oil from solid surfaces, such as beaches, rocks, and concrete, through a detergency mechanism and that does not involve dispersing or solubilizing the oil into the water column. Commercial products require testing to qualify for listing on the NCP Product Schedule. Such testing is conducted both for toxicity and effectiveness. Protocols currently exist for bioremediation agents and dispersants, but not SWAs. The US Environmental Protection Agency (EPA) is developing a laboratory testing protocol to evaluate the effectiveness of SWAs in removing crude oil from a solid substrate. This paper summarizes some of the defining research supporting this new protocol. Multiple variables were tested to determine their effect on SWA performance. The protocol was most sensitive to SWA-to-oil ratio and rotational speed of mixing. Less sensitive variables were contact time, mixing time, and SWA concentration when total applied mass of active product was constant. EPA recommendations for the testing protocol will be made following round robin testing.  相似文献   
142.
In most climate simulations used by the Intergovernmental Panel on Climate Change 2007 fourth assessment report, stratospheric processes are only poorly represented. For example, climatological or simple specifications of time-varying ozone concentrations are imposed and the quasi-biennial oscillation (QBO) of equatorial stratospheric zonal wind is absent. Here we investigate the impact of an improved stratospheric representation using two sets of perturbed simulations with the Hadley Centre coupled ocean atmosphere model HadGEM1 with natural and anthropogenic forcings for the 1979–2003 period. In the first set of simulations, the usual zonal mean ozone climatology with superimposed trends is replaced with a time series of observed zonal mean ozone distributions that includes interannual variability associated with the solar cycle, QBO and volcanic eruptions. In addition to this, the second set of perturbed simulations includes a scheme in which the stratospheric zonal wind in the tropics is relaxed to appropriate zonal mean values obtained from the ERA-40 re-analysis, thus forcing a QBO. Both of these changes are applied strictly to the stratosphere only. The improved ozone field results in an improved simulation of the stepwise temperature transitions observed in the lower stratosphere in the aftermath of the two major recent volcanic eruptions. The contribution of the solar cycle signal in the ozone field to this improved representation of the stepwise cooling is discussed. The improved ozone field and also the QBO result in an improved simulation of observed trends, both globally and at tropical latitudes. The Eulerian upwelling in the lower stratosphere in the equatorial region is enhanced by the improved ozone field and is affected by the QBO relaxation, yet neither induces a significant change in the upwelling trend.  相似文献   
143.
We utilized recordings of seismic shear phases provided by several North American broadband seismometer arrays to provide unique constraints on shear wave anisotropy beneath the northern and central Pacific Ocean. Using a new analysis method that reduces measurement errors and enables the analysis of a larger number of available waveforms, we examined relative travel times of teleseismic S and Sdiff that sample a large area of lowermost mantle structure. The results of this study provide evidence for small-scale lateral and depth variations in shear wave anisotropy for a broad region of the lowermost mantle beneath the Pacific Ocean. In particular, we image a localized zone of anomalously strong anisotropy whose strength increases toward the top of D″ beneath Hawaii. Our results, combined with a previous study of VP/VSH ratios, indicate that ancient subducted slab material may be responsible for observations beneath the northern Pacific, while lenses or layers of core–mantle boundary reaction products or partial melt, oriented by horizontal inflow of mantle material to the Hawaiian plume source, can explain observations beneath the central Pacific.  相似文献   
144.
Karen A. Merritt  Aria Amirbahman   《Earth》2009,96(1-2):54-66
Considerable recent research has focused on methylmercury (MeHg) cycling within estuarine and coastal marine environments. Because MeHg represents a potent neurotoxin that may magnify in marine foodwebs, it is important to understand the mechanisms and environmental variables that drive or constrain methylation dynamics in these environments. This critical review article explores the mechanisms hypothesized to influence aqueous phase and sediment solid phase MeHg concentrations and depth-specific inorganic Hg (II) (Hgi) methylation rates (MMR) within estuarine and coastal marine environments, and discusses issues of terminology or methodology that complicate mechanism-oriented interpretation of field and laboratory data. Mechanisms discussed in this review article include: 1) the metabolic activity of sulfate reducing bacteria (SRB), the microbial group thought to dominate mercury methylation in these environments; 2) the role that Hgi concentration and/or speciation play in defining depth-specific Hgi methylation rates; and 3) the depth-dependent balance between MeHg production and consumption within the sedimentary environment. As discussed in this critical review article, the hypothesis of SRB community control on the Hgi methylation rate in estuarine and coastal marine environments is broadly supported by the literature. Although Hgi speciation, as a function of porewater inorganic sulfide and/or dissolved organic matter concentration and/or pH, may also play a role in observed variations in MMR, the nature and function of the controlling ligand(s) has not yet been adequately defined. Furthermore, although it is generally recognized that the processes responsible for MeHg production and consumption overlap spatially and/or kinetically in the sedimentary environment, and likely dictate the extent to which MeHg accumulates in the aqueous and/or sediment solid phase, this conceptual interpretation requires refinement, and would benefit greatly from the application of kinetic modeling.  相似文献   
145.
This article presents the outcome of research aimed at assisting governments in meeting their commitments and legal obligations for sustainable fisheries, based on increasing evidence that global fisheries are in crisis. The article assesses the effectiveness of the existing legal and institutional framework for high seas living resources. It focuses on: (1) the role of regional fisheries management organizations (RFMOs); (2) tools for compliance and enforcement to stem illegal fishing; and (3) mechanisms for habitat protection. The article further highlights a variety of options for addressing key weaknesses and gaps in current ocean governance, including United Nations General Assembly (UNGA) resolutions, reforms at the regional level, as well as a possible new legal instrument, with a view to informing international discussions on ways to ensure the sustainable use of high seas resources without compromising the health of the marine environment.  相似文献   
146.
Human activities influence watershed sediment dynamics in profound ways, often resulting in excessive loading of suspended sediment to rivers. One of the primary factors limiting our ability to effectively manage sediment at the watershed scale has been our inability to adequately measure relatively small erosion rates (on the order of millimeters to centimeters per year) over annual and sub‐annual time scales on spatially‐extensive landforms, such as river banks and bluffs. Terrestrial laser scanning (TLS) can be employed to address this need. TLS collects high‐resolution data allowing for more accurate monitoring of erosion rates and processes, and provides a new opportunity to make precise measurements of geomorphic change on vertical landforms like banks and bluffs, but challenges remain. This research highlights challenges and limitations of using TLS for change detection on river banks and bluffs including the presence of vegetation, natural surface crenulations, and difficulties with creating benchmarks, and provides solutions developed to overcome these limitations. Results indicate that data processing algorithms for change detection can have a significant impact on the calculated erosion rates, with different methods producing results that can vary by over 100%. The most accurate change detection technique compares a point cloud to a triangulated irregular network (TIN) along a set of vectors that accommodate bluff curvature. This paper outlines a variety of methods used to measure bluff change via TLS and explains the accompanying error analysis that supports these methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
147.
Regime shifts in the marine environment have recently received much attention. To date, however, few large-scale meta-analyses have been carried out due to insufficient data coverage and integration between sustained observational datasets because of diverse methodologies used in data collection, recording and archival. Here we review the available data on regime shifts globally, followed by a review of current and planned policies with relevance to regime shifts.We then focus on the North and Baltic Seas, providing examples of existing efforts for data integration in the MarBEF Network of Excellence. Existing gaps in data coverage are identified, and the added value from meta-analyses of multiple datasets demonstrated using examples from the MarBEF integrated data project LargeNet. We discuss whether these efforts are addressing current policy needs and close with recommendations for future integrated data networks to increase our ability to understand, identify and predict recent and future regime shifts.  相似文献   
148.
Increased bank stability by riparian vegetation can have profound impacts on channel morphology and dynamics in low‐energy systems, but the effects are less clear in high‐energy environments. Here we investigate the role of vegetation in active, aggrading braided systems at Mount Pinatubo, Philippines, and compare results with numerical modeling results. Gradual reductions in post‐eruption sediment loads have reduced bed reworking rates, allowing vegetation to finally persist year‐round on the Pasig‐Potrero and Sacobia Rivers. From 2009–2011 we collected data detailing vegetation extent, type, density, and root strength. Incorporating these data into the RipRoot model and BSTEM (Bank Stability and Toe Erosion Model) shows cohesion due to roots increases from zero in unvegetated conditions to > 10·2 kPa in densely‐growing grasses. Field‐based parameters were incorporated into a cellular model comparing vegetation strength and sediment mobility effects on braided channel dynamics. The model shows both low sediment mobility and high vegetation strength lead to less active systems, reflecting trends observed in the field. The competing influence of vegetation strength versus channel dynamics is a concept encapsulated in a dimensionless ratio between timescales for vegetation growth and channel reworking known as T*. An estimated T* between 1·5 and 2·3 for the Pasig‐Potrero River suggests channels are still very mobile and likely to remain braided until aggradation rates decline further. Vegetation does have an important effect on channel dynamics, however, by focusing flow and thus aggradation into the unvegetated fraction of braidplain, leading to an aggradational imbalance and transition to a more avulsive state. The future trajectory of channel–vegetation interactions as sedimentation rates decline is complicated by strong seasonal variability in precipitation and sediment loads, driving incision and armoring in the dry season. By 2011, incision during the dry season was substantial enough to lower the water‐table, weaken existing vegetation, and allow for vegetation removal in future avulsions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
149.
Palaeomagnetic measurements have been made on specimens from Late Pleistocene sediments of a piston boring at Rubjerg in Vendsyssel, northern Jutland. The stratigraphy of the deposits is based on content of foraminifera. A total of 70 relatively oriented specimens were investigated palaeomagnetically. Normal steep inclinations close to that of the axial dipole field were found in the Upper Saxicava Sand and in the Younger Yoldia Clay (radiocarbon dated at 14,650 ± 190?12,650 ± 180 B.P.), and a secular variation with an amplitude of 10–12° in the inclincation and a “period” roughly estimated at about 350–400 years was found in the Younger Yoldia Clay.Seventeen relatively oriented specimens from undisturbed older marine deposits revealed a stable low inclination of 11° with α95 = 3°. The age of this apparent geomagnetic excursion falls somewhere between 23,000 and 40,000 B.P. (Older Yoldia Clay). Among other known geomagnetic excursions and events within this interval are Laschamp in France, Mono Lake in California and Lake Mungo in Australia. Until more definite ages have been obtained, the excursion is provisionally named the “Rubjerg Excursion”.  相似文献   
150.
Future physical and chemical changes to the ocean are likely to significantly affect the distribution and productivity of many marine species. Tuna are of particular importance in the tropical Pacific, as they contribute significantly to the livelihoods, food and economic security of island states. Changes in water properties and circulation will impact on tuna larval dispersal, preferred habitat distributions and the trophic systems that support tuna populations throughout the region. Using recent observations and ocean projections from the CMIP3 and preliminary results from CMIP5 climate models, we document the projected changes to ocean temperature, salinity, stratification and circulation most relevant to distributions of tuna. Under a business-as-usual emission scenario, projections indicate a surface intensified warming in the upper 400 m and a large expansion of the western Pacific Warm Pool, with most surface waters of the central and western equatorial Pacific reaching temperatures warmer than 29 °C by 2100. These changes are likely to alter the preferred habitat of tuna, based on present-day thermal tolerances, and in turn the distribution of spawning and foraging grounds. Large-scale shoaling of the mixed layer and increases in stratification are expected to impact nutrient provision to the biologically active layer, with flow-on trophic effects on the micronekton. Several oceanic currents are projected to change, including a strengthened upper equatorial undercurrent, which could modify the supply of bioavailable iron to the eastern Pacific.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号