首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1826篇
  免费   46篇
  国内免费   7篇
测绘学   33篇
大气科学   80篇
地球物理   1008篇
地质学   406篇
海洋学   16篇
天文学   295篇
综合类   3篇
自然地理   38篇
  2021年   22篇
  2020年   24篇
  2018年   40篇
  2017年   55篇
  2016年   66篇
  2015年   57篇
  2014年   69篇
  2013年   78篇
  2012年   31篇
  2011年   36篇
  2010年   53篇
  2009年   51篇
  2008年   48篇
  2007年   36篇
  2006年   36篇
  2004年   28篇
  2003年   25篇
  2002年   33篇
  2001年   24篇
  2000年   26篇
  1999年   20篇
  1998年   27篇
  1997年   20篇
  1996年   36篇
  1995年   23篇
  1994年   29篇
  1993年   25篇
  1992年   30篇
  1991年   25篇
  1990年   25篇
  1989年   20篇
  1988年   32篇
  1987年   25篇
  1986年   35篇
  1985年   22篇
  1984年   32篇
  1983年   32篇
  1982年   41篇
  1981年   25篇
  1980年   24篇
  1979年   42篇
  1978年   28篇
  1977年   28篇
  1976年   21篇
  1975年   26篇
  1974年   25篇
  1973年   27篇
  1972年   26篇
  1971年   25篇
  1962年   19篇
排序方式: 共有1879条查询结果,搜索用时 15 毫秒
51.
52.
The adsorption properties in terms of cation exchange capacity and their relation to the soil and sediment constituents (clay minerals, Fe-, Mn-, and Al-oxyhydroxides, organic matter) were investigated in loess, soil-loess transition zone, and soil at four loess-soil sections in North-Western Croatia. Cation exchange capacity of the bulk samples, the samples after oxalate extraction of Fe, Mn and Al, and after removal of organic matter, as well as of the separated clay fraction, was determined using copper ethylenediamine. Cation exchange capacity (pH~7) of the bulk samples ranges from 5 to 12 cmol c /kg in soil, from 7 to 15 cmol c /kg in the soil-loess transition zone, and from 12 to 20 cmol c /kg in loess. Generally, CEC values increase with depth. Oxalate extraction of Fe, Mn, and Al, and removal of organic matter cause a CEC decrease of 3–38% and 8–55%, respectively, proving a considerable influence of these constituents to the bulk CEC values. In the separated clay fraction (<2 μm) CEC values are up to several times higher relative to those in the bulk samples. The measured CEC values of the bulk samples generally correspond to the clay mineral content identified. Also, a slight increase in muscovite/illite content with depth and the vermiculite occurrence in the loess horizon are concomitant with the CEC increase in deeper horizons, irrespective of the sample pretreatment.  相似文献   
53.
Biogeochemical processes were investigated in alpine river—Kamni?ka Bistrica River (North Slovenia), which represents an ideal natural laboratory for studying anthropogenic impacts in catchments with high weathering capacity. The Kamni?ka Bistrica River water chemistry is dominated by HCO3 ?, Ca2+ and Mg2+, and Ca2+/Mg2+ molar ratios indicate that calcite weathering is the major source of solutes to the river system. The Kamni?ka Bistrica River and its tributaries are oversaturated with respect to calcite and dolomite. pCO2 concentrations were on average up to 25 times over atmospheric values. δ13CDIC values ranged from ?12.7 to ?2.7 ‰, controlled by biogeochemical processes in the catchment and within the stream; carbonate dissolution is the most important biogeochemical process affecting carbon isotopes in the upstream portions of the catchment, while carbonate dissolution and organic matter degradation control carbon isotope signatures downstream. Contributions of DIC from various biogeochemical processes were determined using steady state equations for different sampling seasons at the mouth of the Kamni?ka Bistrica River; results indicate that: (1) 1.9–2.2 % of DIC came from exchange with atmospheric CO2, (2) 0–27.5 % of DIC came from degradation of organic matter, (3) 25.4–41.5 % of DIC came from dissolution of carbonates and (4) 33–85 % of DIC came from tributaries. δ15N values of nitrate ranged from ?5.2 ‰ at the headwater spring to 9.8 ‰ in the lower reaches. Higher δ15N values in the lower reaches of the river suggest anthropogenic pollution from agricultural activity. Based on seasonal and longitudinal changes of chemical and isotopic indicators of carbon and nitrogen in Kamni?ka Bistrica River, it can be concluded that seasonal changes are observed (higher concentrations are detected at low discharge conditions) and it turns from pristine alpine river to anthropogenic influenced river in central flow.  相似文献   
54.
The Mississippi Valley-type (MVT) Pb–Zn ore district at Mežica is hosted by Middle to Upper Triassic platform carbonate rocks in the Northern Karavanke/Drau Range geotectonic units of the Eastern Alps, northeastern Slovenia. The mineralization at Mežica covers an area of 64 km2 with more than 350 orebodies and numerous galena and sphalerite occurrences, which formed epigenetically, both conformable and discordant to bedding. While knowledge on the style of mineralization has grown considerably, the origin of discordant mineralization is still debated. Sulfur stable isotope analyses of 149 sulfide samples from the different types of orebodies provide new insights on the genesis of these mineralizations and their relationship. Over the whole mining district, sphalerite and galena have δ 34 S values in the range of –24.7 to –1.5‰ VCDT (–13.5 ± 5.0‰) and –24.7 to –1.4‰ (–10.7 ± 5.9‰), respectively. These values are in the range of the main MVT deposits of the Drau Range. All sulfide δ 34 S values are negative within a broad range, with δ 34 S pyrite <δ 34 S sphalerite <δ 34 S galena for both conformable and discordant orebodies, indicating isotopically heterogeneous H2S in the ore-forming fluids and precipitation of the sulfides at thermodynamic disequilibrium. This clearly supports that the main sulfide sulfur originates from bacterially mediated reduction (BSR) of Middle to Upper Triassic seawater sulfate or evaporite sulfate. Thermochemical sulfate reduction (TSR) by organic compounds contributed a minor amount of 34S-enriched H2S to the ore fluid. The variations of δ 34 S values of galena and coarse-grained sphalerite at orefield scale are generally larger than the differences observed in single hand specimens. The progressively more negative δ 34 S values with time along the different sphalerite generations are consistent with mixing of different H2S sources, with a decreasing contribution of H2S from regional TSR, and an increase from a local H2S reservoir produced by BSR (i.e., sedimentary biogenic pyrite, organo-sulfur compounds). Galena in discordant ore (–11.9 to –1.7‰; –7.0 ± 2.7‰, n = 12) tends to be depleted in 34 S compared with conformable ore (–24.7 to –2.8‰, –11.7 ± 6.2‰, n = 39). A similar trend is observed from fine-crystalline sphalerite I to coarse open-space filling sphalerite II. Some variation of the sulfide δ 34 S values is attributed to the inherent variability of bacterial sulfate reduction, including metabolic recycling in a locally partially closed system and contribution of H2S from hydrolysis of biogenic pyrite and thermal cracking of organo-sulfur compounds. The results suggest that the conformable orebodies originated by mixing of hydrothermal saline metal-rich fluid with H2S-rich pore waters during late burial diagenesis, while the discordant orebodies formed by mobilization of the earlier conformable mineralization.  相似文献   
55.
Six samples of non-mineralized black shale from a Kupferschiefer section in the northern part of the Polish Zechstein Basin (Zdrada IG-8 drill hole: 1026.16–1026.90 m) were studied for Re–Os isotopes and selected major and trace elements. These black shales, averaging 5.82 wt.% Corg and 1.69 wt.% Stot, display very low base metal values (up to 106 ppb Cu, 792 ppb Pb, and 144 ppb Zn) and have abundances of 64–1376 ppb Re and 0.37–1.25 ppb Os, with a 187Os/188Os ratio of 6.95–22.5. The regression of all Re–Os data yields an age of 247 ± 20 Ma, which is within the range of uncertainties of previous Rb–Sr and K–Ar geochronological studies. The scatter in the Re–Os data can be explained in terms of fluctuations in sedimentary conditions, i.e., restricted basin with terrestrial influence.  相似文献   
56.
Lack of age dates in the terrigenous Cenozoic sediments of the Duero and the Ebro sedimentary basins has complicated tecto-stratic correlation across the two basins. We tentatively synthesize a range of existing studies and new data to construct a rough general paleogeography throughout Upper Cenozoic times. The more extensive erosion of the Ebro has been previously attributed to the earlier moment of opening. We tentatively analyse lithostratic data to conclude that the lower knick-point and different lithologies have also contributed to the deeper erosion in the Ebro Basin. We conclude from lithostratic data and field evidence that the W half of the Rioja was part of the Duero in earlier times and that the escarpment retreated westward through the Rioja in four subsequent episodes of erosion. The tilt of the NW Duero is a consequence of isostatic rebound to this erosion.  相似文献   
57.
58.
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号