全文获取类型
收费全文 | 3624篇 |
免费 | 1031篇 |
国内免费 | 18篇 |
专业分类
测绘学 | 76篇 |
大气科学 | 81篇 |
地球物理 | 2076篇 |
地质学 | 1358篇 |
海洋学 | 250篇 |
天文学 | 544篇 |
自然地理 | 288篇 |
出版年
2022年 | 2篇 |
2021年 | 39篇 |
2020年 | 63篇 |
2019年 | 199篇 |
2018年 | 202篇 |
2017年 | 297篇 |
2016年 | 337篇 |
2015年 | 352篇 |
2014年 | 389篇 |
2013年 | 449篇 |
2012年 | 305篇 |
2011年 | 292篇 |
2010年 | 281篇 |
2009年 | 180篇 |
2008年 | 226篇 |
2007年 | 168篇 |
2006年 | 120篇 |
2005年 | 124篇 |
2004年 | 108篇 |
2003年 | 122篇 |
2002年 | 102篇 |
2001年 | 92篇 |
2000年 | 92篇 |
1999年 | 28篇 |
1998年 | 5篇 |
1997年 | 5篇 |
1996年 | 6篇 |
1995年 | 3篇 |
1994年 | 9篇 |
1992年 | 6篇 |
1991年 | 5篇 |
1989年 | 5篇 |
1988年 | 3篇 |
1987年 | 3篇 |
1986年 | 4篇 |
1985年 | 3篇 |
1984年 | 5篇 |
1983年 | 4篇 |
1982年 | 5篇 |
1980年 | 2篇 |
1979年 | 5篇 |
1977年 | 2篇 |
1975年 | 3篇 |
1974年 | 2篇 |
1973年 | 3篇 |
1969年 | 3篇 |
1959年 | 1篇 |
1955年 | 1篇 |
1954年 | 2篇 |
1950年 | 1篇 |
排序方式: 共有4673条查询结果,搜索用时 0 毫秒
91.
Jun‐ichi Matsuda Miwa Namba Teruyuki Maruoka Takuya Matsumoto Gero Kurat 《Meteoritics & planetary science》2005,40(3):431-443
Abstract— We have carried out noble gas measurements on graphite from a large graphite‐metal inclusion in Canyon Diablo. The Ne data of the low‐temperature fractions lie on the mixing line between air and the spallogenic component, but those of high temperatures seem to lie on the mixing line between Ne‐HL and the spallogenic component. The Ar isotope data indicate the presence of Q in addition to air, spallogenic component and Ar‐HL. As the elemental concentration of Ne in Q is low, we could not detect the Ne‐Q from the Ne data. On the other hand, we could not observe Xe‐HL in our Xe data. As the Xe concentration and the Xe/Ne ratio in Q is much higher than that in the HL component, it is likely that only the contribution of Q is observed in the Xe data. Xenon isotopic data can be explained as a mixture of Q, air, and “El Taco Xe.” The Canyon Diablo graphite contains both HL and Q, very much like carbonaceous chondrites, retaining the signatures of various primordial noble gas components. This indicates that the graphite was formed in a primitive nebular environment and was not heated to high, igneous temperatures. Furthermore, a large excess of 129Xe was observed, which indicates that the graphite was formed at a very early stage of the solar system when 129I was still present. The HL/Q ratios in the graphite in Canyon Diablo are lower than those in carbonaceous chondrites, indicating that some thermal metamorphism occurred on the former. We estimated the temperature of the thermal metamorphism to about 500–600 °C from the difference of thermal retentivities of HL and Q. It is also noted that “El Taco Xe” is commonly observed in many IAB iron meteorites, but its presence in carbonaceous chondrites has not yet been established. 相似文献
92.
Abstract— Quantifying the peak temperatures achieved during metamorphism is critical for understanding the thermal histories of ordinary chondrite parent bodies. Various geothermometers have been used to estimate equilibration temperatures for chondrites of the highest metamorphic grade (type 6), but results are inconsistent and span hundreds of degrees. Because different geothermometers and calibration models were used with different meteorites, it is unclear whether variations in peak temperatures represent actual ranges of metamorphic conditions within type 6 chondrites or differences in model calibrations. We addressed this problem by performing twopyroxene geothermometry, using QUILF95, on the same type 6 chondrites for which peak temperatures were estimated using the plagioclase geothermometer (Nakamuta and Motomura 1999). We also calculated temperatures for published pyroxene analyses from other type 6 H, L, and LL chondrites to determine the most representative peak metamorphic temperatures for ordinary chondrites. Pyroxenes record a narrow, overlapping range of temperatures in H6 (865–926 °C), L6 (812–934 °C), and LL6 (874–945 °C) chondrites. Plagioclase temperature estimates are 96–179 °C lower than pyroxenes in the same type 6 meteorites. Plagioclase estimates may not reflect peak metamorphic temperatures because chondrule glass probably recrystallized to plagioclase prior to reaching the metamorphic peak. The average temperature for H, L, and LL chondrites (~900 °C), which agrees with previously published oxygen isotope geothermometry, is at least 50 °C lower than the peak temperatures used in current asteroid thermal evolution models. This difference may require minor adjustments to thermal model calculations. 相似文献
93.
Jens Orm Maurits Lindstrm Alain Lepinette Jesús Martinez‐Frias Enrique Diaz‐Martinez 《Meteoritics & planetary science》2006,41(10):1605-1612
Abstract— Marine impacts are one category of crater formation in volatile targets. At target water depths exceeding the diameter of the impactor, the zones of vaporization, melting, and excavation of the standard land‐target cratering model develop partially or entirely in the water column. The part of the crater that has a potential of being preserved (seafloor crater) may to a great extent be formed by material emplacement and excavation processes that are very different from land‐target craters. These processes include a high‐energy, water‐jet‐driven excavation flow. At greater water depths, the difference in strength of the target layers causes a concentric crater to evolve. The crater consists of a wide water cavity with a shallow excavation flow along the seabed surrounding a nested, deeper crater in the basement. The modification of the crater is likewise influenced by the water through its forceful resurge to fill the cavity in the water mass and the seafloor. The resurge flow is strongly erosive and incorporates both ejecta and rip‐up material from the seabed surrounding the excavated crater. A combination of field observations and impact experiments has helped us analyze the processes affecting the zone between the basement crater and the maximum extent of the water cavity. The resurge erosion is facilitated by fragmentation of the upper parts of the solid target caused by a) spallation and b) vibrations from the shallow excavation flow and, subsequently, c) the vertical collapse of the water cavity rim wall. In addition, poorly consolidated and saturated sediments may collapse extensively, possibly aided by a violent expansion of the pore water volume when it turns into a spray during passage of the rarefaction wave. This process may also occur at impacts into water‐saturated targets without an upper layer of seawater present. Our results have implications for impacts on both Earth and Mars, and possibly anywhere in the solar system where volatiles exist/have existed in the upper part of the target. 相似文献
94.
Multilayer coatings for reflecting hard X-rays up to 80 keV, like W/Si and Pt/C, have been studied for several years. To go to higher energies, in the range of 100 keV to 250 keV, one needs coatings with smaller d-spacings than can currently be made with these material combinations, and a lower interfacial roughness. With the new material combinations of WC/SiC the interface roughness can be reduced down to between 0.23 nm and 0.25 nm enabling bi-layer thicknesses down to 1.0 nm to reflect efficiently. The production of thinner period coatings thus enables the possibility for focusing optic designs with reasonable focal lengths and throughput up to 250 keV. 相似文献
95.
Samuel Ebert Addi Bischoff Dennis Harries Sarah Lentfort Jean‐Alix Barrat Andreas Pack Jrme Gattacceca Robbin Visser Peter Schmid‐Beurmann Stephan Kimpel 《Meteoritics & planetary science》2019,54(2):328-356
Based on the high abundance of fine‐grained material and its dark appearance, NWA 11024 was recognized as a CM chondrite, which is also confirmed by oxygen isotope measurements. But contrary to known CM chondrites, the typical phases indicating aqueous alteration (e.g., phyllosilicates, carbonates) are missing. Using multiple analytical techniques, this study reveals the differences and similarities to known CM chondrites and will discuss the possibility that NWA 11024 is the first type 3 CM chondrite. During the investigation, two texturally apparent tochilinite–cronstedtite intergrowths were identified within two thin sections. However, the former phyllosilicates were recrystallized to Fe‐rich olivine during a heating event without changing the textural appearance. A peak temperature of 400–600 °C is estimated, which is not high enough to destroy or recrystallize calcite grains. Thus, calcites were never constituents of the mineral paragenesis. Another remarkable feature of NWA 11024 is the occurrence of unknown clot‐like inclusions (UCLIs) within fine‐grained rims, which are unique in this clarity. Their density and S concentration are significantly higher than of the surrounding fine‐grained rim and UCLIs can be seen as primary objects that were not formed by secondary alteration processes inside the rims. Similarities to chondritic and cometary interplanetary dust particles suggest an ice‐rich first‐generation planetesimal for their origin. In the earliest evolution, NWA 11024 experienced the lowest degree of aqueous alteration of all known CM chondrites and subsequently, a heating event dehydrated the sample. We suggest to classify the meteorite NWA 11024 as the first type 3 CM chondrite similar to the classification of CV3 chondrites (like Allende) that could also have lost their matrix phyllosilicates by thermal dehydration. 相似文献
96.
Philipp R. Heck Christopher Herd Jeffrey N. Grossman Dmitry Badjukov Audrey Bouvier Emma Bullock Hasnaa Chennaoui‐Aoudjehane Vinciane Debaille Tasha L. Dunn Denton S. Ebel Ludovic Ferrire Laurence Garvie Jrme Gattacceca Matthieu Gounelle Richard Herd Trevor Ireland Emmanuel Jacquet Robert J. Macke Tim McCoy Francis M. McCubbin Takashi Mikouchi Knut Metzler Mathieu Roskosz Caroline Smith Meenakshi Wadhwa Linda Welzenbach‐Fries Toru Yada Akira Yamaguchi Ryan A. Zeigler Michael Zolensky 《Meteoritics & planetary science》2019,54(7):1397-1400
97.
Marina Martinez Adrian J. Brearley Josep M. Trigo‐Rodríguez Jordi Llorca 《Meteoritics & planetary science》2019,54(11):2845-2863
The petrology and mineralogy of shock melt veins in the L6 ordinary chondrite host of Villalbeto de la Peña, a highly shocked, L chondrite polymict breccia, have been investigated in detail using scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and electron probe microanalysis. Entrained olivine, enstatite, diopside, and plagioclase are transformed into ringwoodite, low‐Ca majorite, high‐Ca majorite, and an assemblage of jadeite‐lingunite, respectively, in several shock melt veins and pockets. We have focused on the shock behavior of diopside in a particularly large shock melt vein (10 mm long and up to 4 mm wide) in order to provide additional insights into its high‐pressure polymorphic phase transformation mechanisms. We report the first evidence of diopside undergoing shock‐induced melting, and the occurrence of natural Ca‐majorite formed by solid‐state transformation from diopside. Magnesiowüstite has also been found as veins injected into diopside in the form of nanocrystalline grains that crystallized from a melt and also occurs interstitially between majorite‐pyrope grains in the melt‐vein matrix. In addition, we have observed compositional zoning in majorite‐pyrope grains in the matrix of the shock‐melt vein, which has not been described previously in any shocked meteorite. Collectively, all these different lines of evidence are suggestive of a major shock event with high cooling rates. The minimum peak shock conditions are difficult to constrain, because of the uncertainties in applying experimentally determined high‐pressure phase equilibria to complex natural systems. However, our results suggest that conditions between 16 and 28 GPa and 2000–2200 °C were reached. 相似文献
98.
We resume and consistently extend our previous researches concerning the Gyldén‐type problem (a two‐body problem with time‐dependent equivalent gravitational parameter). To approach most of the concrete astronomical situations to be modelled in this way, we consider a periodic small perturbation. For the nonresonant case, we present a second‐order analytical solution. For the resonant case, we adopt the most realistic astronomical situation: only one dominant term of the Hamiltonian. In this case we point out a fundamental model of resonance, common to every resonant situation, and, moreover, identical to the first fundamental model of resonance . Considering the simplest model of periodic change of the equivalent gravitational parameter, we .nd that all possible resonances are con.ned to the first fundamental model. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
99.
Josep M. Trigo‐Rodriguez Jordi Llorca Jiri Borovi
ka Juan Fabregat 《Meteoritics & planetary science》2003,38(8):1283-1294
Abstract— Relative chemical abundances of 13 meteoroids were determined by averaging the composition of the radiating gas along the fireball path that originated during their penetration into the Earth's atmosphere. Mg, Fe, Ni, Cr, Mn, and Co abundances, relative to Si, are similar to those reported for CI and CM carbonaceous chondrites and interplanetary dust particles. In contrast, relative abundances of Ca and Ti in meteor spectra indicate that these elements suffer incomplete evaporation processes. The chemical composition of all meteoroids studied in this work differs from that of 1P/Halley dust. 相似文献
100.
Combining shock barometry with numerical modeling: Insights into complex crater formation—The example of the Siljan impact structure (Sweden) 下载免费PDF全文
Sanna Holm‐Alwmark Auriol S. P. Rae Ludovic Ferrière Carl Alwmark Gareth S. Collins 《Meteoritics & planetary science》2017,52(12):2521-2549
Siljan, central Sweden, is the largest known impact structure in Europe. It was formed at about 380 Ma, in the late Devonian period. The structure has been heavily eroded to a level originally located underneath the crater floor, and to date, important questions about the original size and morphology of Siljan remain unanswered. Here we present the results of a shock barometry study of quartz‐bearing surface and drill core samples combined with numerical modeling using iSALE. The investigated 13 bedrock granitoid samples show that the recorded shock pressure decreases with increasing depth from 15 to 20 GPa near the (present) surface, to 10–15 GPa at 600 m depth. A best‐fit model that is consistent with observational constraints relating to the present size of the structure, the location of the downfaulted sediments, and the observed surface and vertical shock barometry profiles is presented. The best‐fit model results in a final crater (rim‐to‐rim) diameter of ~65 km. According to our simulations, the original Siljan impact structure would have been a peak‐ring crater. Siljan was formed in a mixed target of Paleozoic sedimentary rocks overlaying crystalline basement. Our modeling suggests that, at the time of impact, the sedimentary sequence was approximately 3 km thick. Since then, there has been around 4 km of erosion of the structure. 相似文献