首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   13篇
测绘学   12篇
地球物理   63篇
地质学   29篇
海洋学   9篇
天文学   21篇
综合类   1篇
自然地理   5篇
  2024年   1篇
  2022年   1篇
  2021年   4篇
  2019年   3篇
  2018年   4篇
  2017年   5篇
  2016年   3篇
  2015年   3篇
  2014年   5篇
  2013年   7篇
  2012年   6篇
  2011年   9篇
  2010年   10篇
  2009年   7篇
  2008年   8篇
  2007年   3篇
  2006年   6篇
  2005年   9篇
  2004年   3篇
  2003年   6篇
  2002年   13篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1996年   1篇
  1994年   2篇
  1992年   1篇
  1990年   2篇
  1985年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1971年   2篇
排序方式: 共有140条查询结果,搜索用时 140 毫秒
31.
This study employs stable oxygen and hydrogen isotopes as natural tracers to assess the headwater of a landslide next to a drainage divide and the importance of the slope's headwater in the study area. The study is undertaken near Wu‐She Township in the mountains of central Taiwan. Because a reservoir is located on the other side of the divide, this study evaluates the relationship between the reservoir water and headwater of the landslide as well. Over a 1‐year period, water samples from September 2008 to September 2009, including local precipitation (LP), Wu‐She Reservoir's water (WSRW), slope groundwater (SGW), upper‐reach stream water (USTW), and down‐reach stream water (DSTW), were analysed for deuterium (δD) and oxygen (δ18O) stable isotopes. Results indicate that WSRW is the predominant component in SGW: approximately 70% of SGW originates from WSRW and 30% from LP based on a two end‐member mass‐balance mixing model for δ18O. The similar two end‐member mixing model is also employed to assess the contributions of USTW and SGW to DSTW. Model results indicate that SGW is the major source of DSTW with a contribution of about 67%. Accordingly, about 47% of DSTW sources from the WSRW. In short, owing to reservoir leakage, WSRW contributes the greater part of both SGW and DSTW. Plentiful WSRW in SGW threatens the stability of the slope in the divide area. To avoid subsequent continuous slope failure, necessary mitigation steps are required. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
32.
Wang  Chih-peng  Shih  Ban-jwu  Tu  Min-cheng 《Natural Hazards》2022,110(3):1507-1526
Natural Hazards - Keelung Port is one of the international commercial ports in Northern Taiwan. In 1867, a tsunami hit the Port, causing hundreds of casualties. In order to minimize the impact of...  相似文献   
33.
大气校正对SPOT卫星遥测水质的影响   总被引:1,自引:0,他引:1  
藉由卫星遥测进行河川水质监测,目前尚没有较明确可行之方法,如何利用较为简单且适当的SPOT卫星遥测大气校正方法,正确辨识水体水质,是本研究的主要目的。利用SPOT卫星作两阶段非监督式及监督式自动分类,确认卫星影像中水质测站对应之水体样本,并将所有样本依季节分群,俾让卫星监测水体水质样本较为均质。模拟方式采用多变量回归、类神经网络及判别分析3种模式,并比较4种不同之大气校正程序。结果发现。以水质及其指标整体预测来看,类神经网络预测结果较优于多变量回归及判别分析的结果,大气校正方法以直接采用灰度值并消除最暗像元灰度值之校正方法,即可达到不错之预测结果。综合而言,以SPOT或分辨率更高之卫星光谱遥测水质是简单可行,但仍需更多数据以验证其精确度。  相似文献   
34.
35.
Applying active control systems to civil engineering structures subjected to dynamic loading has received increasing interest. This study proposes an active pulse control model, termed unsupervised fuzzy neural network structural active pulse controller (UFN‐SAP controller), for controlling civil engineering structures under dynamic loading. The proposed controller combines an unsupervised neural network classification (UNC) model, an unsupervised fuzzy neural network (UFN) reasoning model, and an active pulse control strategy. The UFN‐SAP controller minimizes structural cumulative responses during earthquakes by applying active pulse control forces determined via the UFN model based on the clusters, classified through the UNC model, with their corresponding control forces. Herein, we assume that the effect of the pulses on structure is delayed until just before the next sampling time so that the control force can be calculated in time, and applied. The UFN‐SAP controller also averts the difficulty of obtaining system parameters for a real structure for the algorithm to allow active structural control. Illustrative examples reveal significant reductions in cumulative structural responses, proving the feasibility of applying the adaptive unsupervised neural network with the fuzzy classification approach to control civil engineering structures under dynamic loading. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
36.
We report Sr, Nd, and Sm isotopic studies of lunar basalt 12038, one of the so-called aluminous mare basalts. A precise internal Rb-Sr isochron yields a crystallization age of 3.35±0.09 AE and initial87Sr/86Sr=0.69922?2 (2σ error limits, 1AE=109 years, λ(87Rb)=0.0139AE?1). An internal Sm-Nd isochron yields an age of 3.28±0.23AE and initial143Nd/144Nd=0.50764?28. Present-day143Nd/144Nd is less than the “chondritic” value, i.e. ?(Nd, 0)=?2.3±0.4 where ?(Nd) is the deviation of143Nd/144Nd from chondritic evolution, expressed as parts in 104. At the time of crystallization ?(Nd, 3.2AE)=1.5±0.6.We have successfully modeled the evolution of the Sr and Nd isotopic compositions and the REE abundances within the framework of our earlier model for Apollo 12 olivine-pigeonite and ilmenite basalts. The isotopic and trace element features of 12038 can be modeled as produced by partial melting of a cumulate mantle source which crystallized from a lunar magma ocean with a chondrite-normalized REE pattern of constant negative slope. Chondrite-normalized La/Yb=2.2 for this hypothetical magma ocean pattern. A plot of I(Sr) versus ?(Nd) for the Apollo 12 basalts clearly shows the influence of varying proportions of olivine, clinopyroxene, orthopyroxene, and plagioclase in the basalt source regions. A small percentage of plagioclase (~5%) in the 12038 source apparently is responsible for low I(Sr) and ?(Nd) in this basalt. Aluminous mare basalts from Mare Crisium (Luna 24) and by inference Mare Fecunditatis (Luna 16) occupy locations on the I(Sr)-?(Nd) plot similar to that of 12038, implying that some basalts from three widely separated lunar regions came from plagioclase-bearing source regions. A summary of model calculations for mare basalts shows a record of lunar mantle solidification during the period when REE abundances in the lunar magma ocean increased from ~20× chondritic to >100× chondritic. Although there is a general trend from olivine to clinopyroxene-dominated source regions with progressive magma ocean evolution, significant mineralogical heterogeneities in mantle composition apparently formed at any given stage of evolution, as evidenced in particular by the three Apollo 12 magma types.  相似文献   
37.
Automatic Solar Flare Tracking Using Image-Processing Techniques   总被引:1,自引:0,他引:1  
Measurement of the evolution properties of solar flares through their complete cyclic development is crucial in the studies of Solar Physics. From the analysis of solar H images, we used Support Vector Machines (SVMs) to automatically detect flares and applied image segmentation techniques to compute their properties. We also present a solution for automatically tracking the apparent separation motion of two-ribbon flares and measuring their moving direction and speed in the magnetic fields. From these measurements, with certain assumptions, we inferred the reconnection of the electric field as a measure of the rate of the magnetic reconnection in the corona. The automatic procedure is a valuable tool for real-time monitoring of flare evolution.  相似文献   
38.
Energy-based probabilistic evaluation of soil liquefaction   总被引:3,自引:0,他引:3  
This paper presents a seismic wave energy-based method with back-propagation neural networks to assess the liquefaction probability. An empirical equation and Fourier spectrum of acceleration are employed, respectively, to calculate the seismic wave energy. Discriminant analysis is used to determine the equation of the boundary curve separating the data points with and without liquefaction. The proposed method shows capability in evaluating the probability of soil liquefaction based on the boundary curve and a logarithm normal distribution.  相似文献   
39.
Measurements of the magnetic field made over an interval of time must be corrected for secular variation before the data can be merged. The older versions of International Geomagnetic Reference Field (IGRF) failed to model secular variation adequately, and compilation of magnetic anomaly maps from different data sets often required numerous ad-hoc adjustments. With the superiority of the new IGRF at modelling secular variation, the merging of multi-year data sets has become much more practicable. This has been demonstrated in the consolidation of nearly 400 000 data points collected between 1972 and 1980 during 10 different survey cruises in the southwest Labrador Sea.Improvements in the IGRF have been achieved at a substantial cost in computing overhead. The new reference field expressions are more complicated than the old, and hence are slower to evaluate on digital computers. When processing large data sets, this can cause unacceptable delays. A third degree polynomial technique has been devised that approximates the total field portion of the full IGRF expression for a limited time and region. The method reduces processing time by a factor of 40, with little sacrifice in accuracy.  相似文献   
40.
Samarium-neodymium isotopic analysis of the martian meteorite Dar al Gani 476 yields a crystallization age of 474 ± 11 Ma and an initial εNd143 value of +36.6 ± 0.8. Although the Rb-Sr isotopic system has been disturbed by terrestrial weathering, and therefore yields no age information, an initial 87Sr/86Sr ratio of 0.701249 ± 33 has been estimated using the Rb-Sr isotopic composition of the maskelynite mineral fraction and the Sm-Nd age. The Sr and Nd isotopic systematics of Dar al Gani 476, like those of the basaltic shergottite QUE94201, are consistent with derivation from a source region that was strongly depleted in incompatible elements early in the history of the solar system. Nevertheless, Dar al Gani 476 is derived from a source region that has a slightly greater incompatible enrichment than the QUE94201 source region. This is not consistent with the fact that the parental magma of Dar al Gani 476 is significantly more mafic than the parental magma of QUE94201, and underscores a decoupling between the major element and trace element-isotopic systematics observed in the martian meteorite suite.Combining the εNd142Nd143 isotopic systematics of the martian meteorites yields a model age for planetary differentiation of 4.513+0.033−0.027 Ga. Using this age, the parent/daughter ratios of martian mantle sources are calculated assuming a two-stage evolutionary history. The calculated sources have very large ranges of parent/daughter ratios (87Rb/86Sr = 0.037-0.374; 147Sm/144Nd = 0.182-0.285; 176Lu/177Hf = 0.028-0.048). These ranges exceed the ranges estimated for terrestrial basalt source regions, but are very similar to those estimated for the sources of lunar mare basalts. In fact, the range of parent/daughter ratios calculated for the martian meteorite sources can be produced by mixing between end-members with compositions similar to lunar mare basalt sources. Two of the sources have compositions that are similar to olivine and pyroxene-rich mafic cumulates with variable proportions of a Rb-enriched phase, such as amphibole, whereas the third source has the composition of liquid trapped in the cumulate pile (i.e. similar to KREEP) after ∼99% crystallization. Correlation between the proportion of trapped liquid in the meteorite source regions and estimates of fO2, suggest that the KREEP-like component may be hydrous. The success of these models in reproducing the martian meteorite source compositions suggests that the variations in trace element and isotopic compositions observed in the martian meteorites primarily reflect melting of the crystallization products of an ancient magma ocean, and that assimilation of evolved crust by mantle derived magmas is not required. Furthermore, the decoupling of major element and trace element-isotopic systematics in the martian meteorite suite may reflect the fact that trace element and isotopic systematics are inherited from the magma source regions, whereas the major element abundances are limited by eutectic melting processes at the time of magma formation. Differences in major element abundances of parental magma, therefore, result primarily from fractional crystallization after leaving their source regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号