首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2397篇
  免费   60篇
  国内免费   65篇
测绘学   68篇
大气科学   380篇
地球物理   529篇
地质学   595篇
海洋学   627篇
天文学   188篇
综合类   38篇
自然地理   97篇
  2024年   2篇
  2023年   5篇
  2022年   21篇
  2021年   37篇
  2020年   40篇
  2019年   50篇
  2018年   116篇
  2017年   111篇
  2016年   159篇
  2015年   76篇
  2014年   153篇
  2013年   212篇
  2012年   103篇
  2011年   143篇
  2010年   147篇
  2009年   146篇
  2008年   136篇
  2007年   135篇
  2006年   107篇
  2005年   102篇
  2004年   103篇
  2003年   67篇
  2002年   54篇
  2001年   48篇
  2000年   33篇
  1999年   32篇
  1998年   26篇
  1997年   20篇
  1996年   13篇
  1995年   9篇
  1994年   8篇
  1993年   9篇
  1992年   8篇
  1991年   10篇
  1990年   12篇
  1989年   5篇
  1988年   5篇
  1987年   7篇
  1986年   5篇
  1985年   9篇
  1984年   5篇
  1983年   3篇
  1982年   10篇
  1981年   2篇
  1980年   6篇
  1979年   2篇
  1973年   1篇
  1972年   3篇
  1968年   1篇
  1965年   1篇
排序方式: 共有2522条查询结果,搜索用时 15 毫秒
931.
The sensitivity of land surface energy partitioning to near-surface air temperature (T a) is a critical issue to understand the interaction between land surface and climatic system. Thus, studies with in situ observed data compiled from various climates and ecosystems are required. The relations derived from such empirical analyses are useful for developing accurate estimation methods of energy partitioning. In this study, the effect of T a on land surface energy partitioning is evaluated by using flux measurement data compiled from a global network of eddy covariance tower sites (FLUXNET). According to the analysis of 25 FLUXNET sites (60 site-years) data, the Bowen ratio is found to have a linear relation with the bulk surface resistance normalized by aerodynamic and climatological resistance parameters in general, of which the slope and intercept are dependent on T a. Energy partitioning in warmer atmosphere is less sensitive to changes in land surface conditions. In addition, a negative relation is found between Bowen ratio and T a, and this relation is stronger above less vegetated surface and under low vapor pressure deficit and low received radiative energy condition. The empirical results obtained in this study are expected to be useful in gaining better understanding of alternating surface energy partitioning under increasing T a.  相似文献   
932.
This study defines the Changma onset using the available water resources index (AWRI) for 25?years (1985–2009) and verifies the validity of this definition. The three conditions for defining the Changma onset are established as follows: (i) The first day exceeding the June AWRI (threshold) averaged over the 25-year period. (ii) The continuation of the value over the threshold for at least 1?week after the onset. (iii) After the continuation of more than 1?week, the non-continuation of the value under the threshold for at least 1?week. The 25-year average Changma onset date is 24 June with a standard deviation of 9?days. The defined Changma onset is verified through the analysis on the relationship with the Antarctic oscillation (AAO). AAO in June shows a high correlation with not only the Changma onset but also the June precipitation (AWRI) in Korea. These three variables are influenced by Mascarene and Australian (positive AAO pattern) highs from in the preceding March. When these two pressure systems develop, the cold cross-equatorial flow in the direction from the region around Australia to the equator is intensified, which in turn, forces a western North Pacific high (WNPH) to develop northward; this eventually drives the rain belt north. As a result, the Changma begins early in the positive AAO phase, and the June precipitation increases in Korea. In addition, a WNPH that develops more northward increases the landfalling frequency of tropical cyclones in Korea, which plays an important role in increasing the June precipitation.  相似文献   
933.
Solar surface insolation (SSI) represents how much solar radiance reaches the Earth??s surface in a specified area and is an important parameter in various fields such as surface energy research, meteorology, and climate change. This study calculates insolation using Multi-functional Transport Satellite (MTSAT-1R) data with a simplified cloud factor over Northeast Asia. For SSI retrieval from the geostationary satellite data, the physical model of Kawamura is modified to improve insolation estimation by considering various atmospheric constituents, such as Rayleigh scattering, water vapor, ozone, aerosols, and clouds. For more accurate atmospheric parameterization, satellite-based atmospheric constituents are used instead of constant values when estimating insolation. Cloud effects are a key problem in insolation estimation because of their complicated optical characteristics and high temporal and spatial variation. The accuracy of insolation data from satellites depends on how well cloud attenuation as a function of geostationary channels and angle can be inferred. This study uses a simplified cloud factor that depends on the reflectance and solar zenith angle. Empirical criteria to select reference data for fitting to the ground station data are applied to suggest simplified cloud factor methods. Insolation estimated using the cloud factor is compared with results of the unmodified physical model and with observations by ground-based pyranometers located in the Korean peninsula. The modified model results show far better agreement with ground truth data compared to estimates using the conventional method under overcast conditions.  相似文献   
934.
Variations of global evapotranspiration (ET) and fresh water discharge from land to oceans (D) are important components of global climate change, but have not been well monitored. In this study, we present an estimate of twenty years (1989 to 2008) variations of global D and ET derived from satellite remote-sensed measurements and recent reanalysis products, ERA-Interim and CFSR, by using a novel application of the water balance equations separately over land and over oceans. Time series of annual mean global D and ET from both satellite observations and reanalyses show clear positive and negative trends, respectively, as a result of modest increase of oceanic evaporation (E o ). The inter-annual variations of D are similar to the in-situ-based observations, and the negative trend of ET supports the previous result that relative humidity has decreased while temperature has increased on land. The results suggest considerable sensitivity of the terrestrial hydrological cycles (e.g., D and ET) to small changes in precipitation and oceanic evaporation.  相似文献   
935.
In this study, we investigated the impact of future climate change on fire activity in 12 districts across Portugal. Using historical relationships and the HIRHAM (High Resolution Hamburg Model) 12 and 25 km climate simulations, we assessed the fire weather and subsequent fire activity under a 2 × CO2 scenario. We found that the fire activity prediction was not affected by the spatial resolution of the climate model used (12 vs. 25 km). Future area burned is predicted to increase 478% for Portugal as a whole, which equates to an increase from 1.4% to 7.8% of the available burnable area burning annually. Fire occurrence will also see a dramatic increase (279%) for all of Portugal. There is significant spatial variation within these results; the north and central districts of the country generally will see larger increases in fire activity.  相似文献   
936.
Dense observations and numerical experiments were carried out to estimate the modification of mesoscale circulation, particularly cold drainage wind. It was confirmed that nocturnal drainage flow can develop on clear calm summer day and change due to orographical forcing and the heterogeneity of heat flux induced by the discontinuity of land-use. The temperature of nocturnal drainage flow at Sungji Valley, Busan Korea, tended to increase as it passed over the urban surface due to anthropogenic heat. The increase in temperature reached 2.9 K at night. The roughness associated with the exchange of momentum flux alone and the pass of nocturnal drainage flow is important for modifying the characteristics of flow Numerical simulations carried out under various surface conditions showed good agreement with the observations. Urban heat fluxes from the surface during the day are fundamental causes of the changes in the urban mesoscale circulation. In addition, the impact of a discontinuity of surface heat flux on mesoscale flow modification tends to be greater at night than during the day because the direction of urban surface heat fluxes at night is different from that in rural areas. In addition, the criterion to estimate the increase in temperature nocturnal drainage flow was also proposed, and provided results that generally agreed with the numerical results.  相似文献   
937.
Field experiments were carried out to evaluate the effect of Granulated Coal Ash (GCA) on remediation of coastal sediments in terms of removing phosphates and hydrogen sulfide. Phosphate concentrations in the sediment were kept below 0.2 mg/l after the application of GCA, whereas those in the control sites increased up to 1.0 mg/l. The concentration of hydrogen sulfide in the sediment was maintained at almost zero in the experimental sites (GCA application sites) for over one year, whereas it ranged 0.1–2.4 mg S L−1 in control sites. Meanwhile, individual number of benthos increased in the experimental sites by several orders of magnitude compared to the control sites. The major process involved in hydrogen sulfide removal by GCA was thought to be the increase in pH, which suppresses hydrogen sulfide formation. From our findings, we concluded that GCA is an effective material for remediating organically enriched coastal sediment.  相似文献   
938.
Geomagnetism and Aeronomy - Two-dimensional distributions of the relative color index (RCI) of the continuous corona spectrum of 1991 and 2006 reveal that the energy distributions in the continuums...  相似文献   
939.
940.
For the appropriate management and restoration of rivers, isolated vegetation is often a practical means for improving stream habitat and ecology. The effect of a finite vegetation patch on flow and bed morphology in an open channel was investigated using laboratory experiments. The patch containing emergent and submerged vegetation was modeled using circular cylinders and located mid‐channel along a side wall. Several configurations of the patch and submergence ratio (i.e. water depth to the height of vegetation), and two flow conditions (i.e. below and above the sediment motion threshold) were considered. For flows below the sediment motion threshold, erosion occurred primarily on the opposite side of the patch and near the leading edge of the patch. The degree of scouring depth observed in both these regions was affected by the submergence ratio and it increased with the non‐dimensional flow blockage (i.e. the product of the patch density and width). In contrast, for flows above the sediment motion threshold, sediment accumulated within and around the patch due to a reduction in bed shear stress, which was strongly influenced by the flow blockage and the obstruction ratio (i.e. the ratio of patch width to channel width). The eroded area observed within the patch was consistent with the interior adjustment region where the deceleration and diversion of flow occurred through the patch. As the flow blockage increased or as the obstruction ratio decreased, the deposition rate within and behind the patch decreased. Furthermore, the deposition rate increased with an increase in the ratio of flow rate through the patch to total flow rate regardless of the submergence ratio. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号