首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   326篇
  免费   16篇
  国内免费   1篇
测绘学   5篇
大气科学   8篇
地球物理   100篇
地质学   73篇
海洋学   62篇
天文学   69篇
综合类   2篇
自然地理   24篇
  2021年   5篇
  2020年   2篇
  2019年   2篇
  2018年   6篇
  2017年   5篇
  2016年   4篇
  2014年   9篇
  2013年   16篇
  2012年   11篇
  2011年   15篇
  2010年   10篇
  2009年   24篇
  2008年   13篇
  2007年   15篇
  2006年   12篇
  2005年   16篇
  2004年   14篇
  2003年   10篇
  2002年   14篇
  2001年   15篇
  2000年   5篇
  1999年   2篇
  1998年   6篇
  1997年   6篇
  1996年   11篇
  1993年   3篇
  1991年   5篇
  1990年   6篇
  1988年   4篇
  1987年   2篇
  1985年   4篇
  1984年   3篇
  1982年   6篇
  1981年   3篇
  1980年   6篇
  1979年   6篇
  1978年   2篇
  1977年   3篇
  1976年   4篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
  1968年   3篇
  1947年   2篇
  1921年   2篇
  1910年   1篇
  1908年   1篇
  1871年   3篇
排序方式: 共有343条查询结果,搜索用时 31 毫秒
231.
Abstract— In this paper, we present numerical simulations aimed at reproducing the Baptistina family based on its properties estimated by observations. A previous study by Bottke et al. (2007) indicated that this family is probably at the origin of the K/T impactor, is linked to the CM meteorites and was produced by the disruption of a parent body 170 km in size due to the head‐on impact of a projectile 60 km in size at 3 km s?1. This estimate was based on simulations of fragmentation of non‐porous materials, while the family was assumed to be of C taxonomic type, which is generally interpreted as being formed from a porous body. Using both a model of fragmentation of non‐porous materials, and a model that we developed recently for porous ones, we performed numerical simulations of disruptions aimed at reproducing this family and at analyzing the differences in the outcome between those two models. Our results show that a reasonable match to the estimated size distribution of the real family is produced from the disruption of a porous parent body by the head‐on impact of a projectile 54 km in size at 3 km s?1. Thus, our simulations with a model consistent with the assumed dark type of the family requires a smaller projectile than previously estimated, but the difference remains small enough to not affect the proposed scenario of this family history. We then find that the break‐up of a porous body leads to different outcomes than the disruption of a non‐porous one. The real properties of the Baptistina family still contain large uncertainties, and it remains possible that its formation did not involve the proposed impact conditions. However, the simulations presented here already show some range of outcomes and once the real properties are better constrained, it will be easy to check whether one of them provides a good match.  相似文献   
232.
We present N-body simulations of planetary accretion beginning with 1 km radius planetesimals in orbit about a 1 M star at 0.4 AU. The initial disk of planetesimals contains too many bodies for any current N-body code to integrate; therefore, we model a sample patch of the disk. Although this greatly reduces the number of bodies, we still track in excess of 105 particles. We consider three initial velocity distributions and monitor the growth of the planetesimals. The masses of some particles increase by more than a factor of 100. Additionally, the escape speed of the largest particle grows considerably faster than the velocity dispersion of the particles, suggesting impending runaway growth, although no particle grows large enough to detach itself from the power law size-frequency distribution. These results are in general agreement with previous statistical and analytical results. We compute rotation rates by assuming conservation of angular momentum around the center of mass at impact and that merged planetesimals relax to spherical shapes. At the end of our simulations, the majority of bodies that have undergone at least one merger are rotating faster than the breakup frequency. This implies that the assumption of completely inelastic collisions (perfect accretion), which is made in most simulations of planetary growth at sizes 1 km and above, is inappropriate. Our simulations reveal that, subsequent to the number of particles in the patch having been decreased by mergers to half its initial value, the presence of larger bodies in neighboring regions of the disk may limit the validity of simulations employing the patch approximation.  相似文献   
233.
Some phytoplankton species have been predicted to contribute more to the biological pump than others. In this study, we examine the potential of species distribution modelling (SDM) for describing current and predicting future global distributions of two phytoplankton species: the diatom Chaetoceros diadema and the coccolithophore Emiliania huxleyi. Species distribution models (SDMs) were constructed using species data from the Ocean Biogeographic Information System and environmental layers from the Coupled Model Intercomparison Project Phase 5. The resulting distributions were evaluated by comparing predicted distributions with those found via a literature survey. The developed SDMs were then applied to predict future changes in the distributions of these species using environmental conditions based on the Intergovernmental Panel on Climate Change's Representative Concentration Pathways scenario 8.5 climate scenario, predicted for the year 2100. The model predicts that the total ocean area covered by C. diadema and E. huxleyi will decline under the examined climate scenario by 8% and 16%, respectively. Furthermore, the future ranges above depths >1,000 m are predicted to decline by 28% for C. diadema. As the biological pump is most active in deep ocean waters, this projected decrease in range in the deeper regions of the ocean may have implications for carbon sequestration, particularly for the diatom species. We conclude that SDM appears to be a robust tool for examining phytoplankton distributions. If the predicted changes in ranges of these two species under future ocean conditions are realised, this may result in a reduced contribution of these two phytoplankton species to carbon sequestration via the biological pump.  相似文献   
234.
235.
Ocean color satellite imagery has been used to detect blooms of phytoplankton for decades. A bloom in this sense is defined as a rapid increase in chlorophyll-a concentration from newly synthesized sources (primary production) within the photic zone. Chlorophyll also has the potential to enter the water column from benthic sources as a result of resuspension events. Currently available bio-optical ocean color algorithms estimate the near-surface chlorophyll concentration in the water column but cannot characterize the source. By estimating resuspension, one can isolate the proportion of the total chlorophyll present in the water column that originated from benthic sources. The increase in remote sensing reflectance (Rrs) at 670nm as measured by SeaWiFS appears as a result of an increase in suspended materials, therefore, providing an estimate of resuspension. After examining imagery in locations of variable resuspension along the Texas coast, a strong positive correlation between the Rrs(670) produced by resuspension and the ratio of resuspended chlorophyll to total water column chlorophyll was observed.  相似文献   
236.
Green-lipped mussels, Perna viridis, and Manila clams, Ruditapes philippinarum were sourced from “clean” sites in the Hong Kong region, depurated in a laboratory using uncontaminated filtered seawater for 8 days, and transplanted to a suspected gradient of chemically polluted sites in Hong Kong. After 14- and 28-days of field exposure, several antioxidant parameters including glutathione S transferase (GST), catalase (CAT), glutathione peroxidase (GPx), and glutathione (GSH) were quantified in gill and hepatopancreas tissues. Whole body tissue concentrations of polycyclic aromatic hydrocarbons (PAHs), petroleum hydrocarbons (PHCs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCs) were determined in pooled site samples. Chemical analyses indicated that: (a) clams had higher levels of PAHs, PHCs, DDTs and PCBs, whereas mussels had higher hexachlorocyclohexane (HCHs) and there was no difference between species for dieldrin and remaining OCs; (b) Kat O should not be continued as a “clean” reference site for Hong Kong, because of the levels of contaminants measured and (c) PAH concentrations in the current survey were similar to those previously measured. Toxicological conclusions were: (a) antioxidant responses were different between species; (b) CAT and GST have highest utility in clams for field use in Hong Kong, whereas CAT in both gill and hepatopancreas tissue showed most potential in mussels; (c) significant induction of antioxidant responses over day 0 (excluding GPx in both tissues, and GST in mussel hepatic tissue); (d) groups of contaminants do not consistently induce antioxidant responses and (e) organochlorines and PCBs correlated significantly with CAT and GST in clam hepatopancreas and with CAT in mussel gill and hepatic tissue. Multivariate statistical techniques indicated little relationship between the site patterns for antioxidant responses and the contaminant gradients identified in body burden analysis.  相似文献   
237.
Green-lipped mussels (Perna viridis) were collected from seven fish culture zones (FCZs) in Hong Kong and analyzed for okadaic acid (OA). A conventional HPLC method was modified by incorporating a proteinase K digestion step. Results suggest that a higher recovery (2.5 times higher) of OA was obtained from spiked samples after the addition of 1.08 mg proteinase K in comparison with samples incubated without the proteolytic enzyme. For the hepatopancreas (HP) of individual field-collected mussels, the additional digestion step can enhance OA extraction by 3.1 times. Spatial and temporal variations in OA concentrations in the mussels from various FCZs were investigated. The highest concentration of OA in mussel HP samples was 1164.9 ng/g HP wet wt. With respect to OA concentrations in whole mussel tissues from seven sites and four seasonal samplings, the concentrations were between 70.0 and 131.0 ng/g wet wt., which did not exceed the generally recognized international regulatory criteria (>200 ng/g) for OA.  相似文献   
238.
Well‐calibrated seismic interpretation in the Halten Terrace of Mid‐Norway demonstrates the important role that structural feedback between normal fault growth and evaporite mobility has for depocentre development during syn‐rift deposition of the Jurassic–Early Cretaceous Viking and Fangst Groups. While the main rift phase reactivated pre‐existing structural trends, and initiated new extensional structures, a Triassic evaporite interval decouples the supra‐salt cover strata from the underlying basement, causing the development of two separate fault populations, one in the cover and the other confined to the pre‐salt basement. Detailed displacement–length analyses of both cover and basement fault arrays, combined with mapping of the component parts of the syn‐rift interval, have been used to reveal the spatial and temporal evolution of normal fault segments and sediment depocentres within the Halten Terrace area. Significantly, the results highlight important differences with traditional models of normal fault‐controlled subsidence, including those from parts of the North Sea where salt is absent. It can now be shown that evaporite mobility is intimately linked to the along‐strike displacement variations of these cover and basement faults. The evaporites passively move beneath the cover in response to the extension, such that the evaporite thickness becomes greatest adjacent to regions of high fault displacement. The consequent evaporite swells can become large enough to have pronounced palaeobathymetric relief in hangingwall locations, associated with fault displacement maxima– the exact opposite situation to that predicted by traditional models of normal fault growth. Evaporite movement from previous extension also affects the displacement–length relationships of subsequently nucleated or reactivated faults. Evaporite withdrawal, on the other hand, tends to be a later‐stage feature associated with the high stress regions around the propagating tips of normal faults or their coeval hangingwall release faults. The results indicate the important effect of, and structural feedback caused by, syn‐rift evaporite mobility in heavily modifying subsidence patterns produced by normal fault array evolution. Despite their departure from published models, the results provide a new, generic framework within which to interpret extensional fault and depocentre development and evolution in areas in which mobile evaporites exist.  相似文献   
239.
This paper builds on preliminary work in which numerical simulations of the collisional disruption of large asteroids (represented by the Eunomia and Koronis family parent bodies) were performed and which accounted not only for the fragmentation of the solid body through crack propagation, but also for the mutual gravitational interaction of the resulting fragments. It was found that the parent body is first completely shattered at the end of the fragmentation phase, and then subsequent gravitational reaccumulations lead to the formation of an entire family of large and small objects with dynamical properties similar to those of the parent body. In this work, we present new and improved numerical simulations in detail. As before, we use the same numerical procedure, i.e., a 3D SPH hydrocode to compute the fragmentation phase and the parallel N-body code pkdgrav to compute the subsequent gravitational reaccumulation phase. However, this reaccumulation phase is now treated more realistically by using a merging criterion based on energy and angular momentum and by allowing dissipation to occur during fragment collisions. We also extend our previous studies to the as yet unexplored intermediate impact energy regime (represented by the Flora family formation) for which the largest fragment's mass is about half that of the parent body. Finally, we examine the robustness of the results by changing various assumptions, the numerical resolution, and different numerical parameters. We find that in the lowest impact energy regime the more realistic physical approach of reaccumulation leads to results that are statistically identical to those obtained with our previous simplistic approach. Some quantitative changes arise only as the impact energy increases such that higher relative velocities are reached during fragment collisions, but they do not modify the global outcome qualitatively. As a consequence, these new simulations confirm previous main results and still lead to the conclusion that: (1) all large family members must be made of gravitationally reaccumulated fragments; (2) the original fragment size distribution and their orbital dispersion are respectively steeper and smaller than currently observed for the real families, supporting recent studies on subsequent evolution and diffusion of family members; and (3) the formation of satellites around family members is a frequent and natural outcome of collisional processes.  相似文献   
240.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号