首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54410篇
  免费   762篇
  国内免费   610篇
测绘学   1797篇
大气科学   4104篇
地球物理   11018篇
地质学   19292篇
海洋学   4305篇
天文学   12151篇
综合类   172篇
自然地理   2943篇
  2021年   381篇
  2020年   401篇
  2019年   434篇
  2018年   1082篇
  2017年   1006篇
  2016年   1369篇
  2015年   845篇
  2014年   1324篇
  2013年   2748篇
  2012年   1462篇
  2011年   1957篇
  2010年   1623篇
  2009年   2164篇
  2008年   1917篇
  2007年   1829篇
  2006年   1881篇
  2005年   1577篇
  2004年   1521篇
  2003年   1470篇
  2002年   1460篇
  2001年   1271篇
  2000年   1267篇
  1999年   1151篇
  1998年   1094篇
  1997年   1111篇
  1996年   974篇
  1995年   942篇
  1994年   895篇
  1993年   801篇
  1992年   727篇
  1991年   709篇
  1990年   753篇
  1989年   642篇
  1988年   663篇
  1987年   774篇
  1986年   655篇
  1985年   886篇
  1984年   958篇
  1983年   940篇
  1982年   829篇
  1981年   742篇
  1980年   759篇
  1979年   667篇
  1978年   671篇
  1977年   615篇
  1976年   609篇
  1975年   575篇
  1974年   629篇
  1973年   643篇
  1972年   407篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
911.
An interesting probe of the nature of dark energy is the measure of its sound speed, c s. We review the significance for constraining sound speed models of dark energy using large neutral hydrogen (H  i ) surveys with the square kilometre array (SKA). Our analysis considers the effect on the sound speed measurement that arises from the covariance of c s with the dark energy density, Ωde, and a time-varying equation of state,   w ( a ) = w 0+ (1 − a ) w a   . We find that the approximate degeneracy between dark energy parameters that arises in power spectrum observations is lifted through redshift tomography of the H  i -galaxy angular power spectrum, resulting in sound speed constraints that are not severely degraded. The cross-correlation of the galaxy and the integrated Sachs Wolfe (ISW) effect spectra contributes approximately 10 per cent of the information that is needed to distinguish variations in the dark energy parameters, and most of the discriminating signal comes from the galaxy auto-correlation spectrum. We also find that the sound speed constraints are weakly sensitive to the H  i bias model. These constraints do not improve substantially for a significantly deeper H  i survey since most of the clustering sensitivity to sound speed variations arises from   z ≲ 1.5  . A detection of models with sound speeds close to zero,   c s≲ 0.01,  is possible for dark energy models with   w ≳−0.9  .  相似文献   
912.
We present spectropolarimetry of the solid CO feature at 4.67 μm along the line of sight to Elias 16, a field star background to the Taurus dark cloud. A clear increase in polarization is observed across the feature with the peak of polarization shifted in wavelength relative to the peak of absorption. This shows that dust grains in dense, cold environments (temperatures ∼20 K or less) can align and produce polarization by dichroic absorption. For a grain model, consisting of a core with a single mantle, the polarization feature is best modelled by a thick CO mantle, possibly including 10 per cent water-ice, with the volume ratio of mantle to bare grain of ∼5. Radiative torques could be responsible for the grain alignment provided the grain radius is at least 0.5 μm. This would require the grain cores to have a radius of at least 0.3 μm, much larger than grain sizes in the diffuse interstellar medium. Sizes of this order seem reasonable on the basis of independent evidence for grain growth by coagulation, as well as mantle formation, inside dense clouds.  相似文献   
913.
We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (∼1.68REarth) and Kepler-10b (∼1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jupiter, Saturn, Neptune, and Uranus to the orbital location of CoRoT-7b at 0.017 AU and Kepler-10b at 0.01684 AU and assuming that these planets orbit a K- or G-type host star. Our findings indicate that hydrogen-rich gas giants within the mass domain of Saturn or Jupiter cannot thermally lose such an amount of mass that CoRoT-7b and Kepler-10b would result in a rocky residue. Moreover, our calculations show that the present time mass of both rocky exoplanets can be neither a result of evaporation of a hydrogen envelope of a “Hot Neptune” nor a “Hot Uranus”-class object. Depending on the initial density and mass, these planets most likely were always rocky planets which could lose a thin hydrogen envelope, but not cores of thermally evaporated initially much more massive and larger objects.  相似文献   
914.
A laser-driven experiment produces images of dense shocked material by x-ray transmission. The post-shock material is sufficiently dense that no significant signal passes through the dense layer, and therefore the shock compression cannot be directly measured by comparing transmitted intensities. One could try to determine the shock compression ratio by observing the ratio of the total distance travelled by the shock to the dense post-shock layer width, but small deviations of the angle of the shock with respect to the angle of imaging create large asymmetric errors in observation. A statistical approach to recovering shock compression by appropriately combining data from several experiments is developed, using fits to a simple model for the shock and shock tube geometry.  相似文献   
915.
The Whole Heliosphere Interval (WHI) was an international observing and modeling effort to characterize the 3-D interconnected ??heliophysical?? system during this solar minimum, centered on Carrington Rotation 2068, March 20??C?April 16, 2008. During the latter half of the WHI period, the Sun presented a sunspot-free, deep solar minimum type face. But during the first half of CR 2068 three solar active regions flanked by two opposite-polarity, low-latitude coronal holes were present. These departures from the quiet Sun led to both eruptive activity and solar wind structure. Most of the eruptive activity, i.e., flares, filament eruptions and coronal mass ejections (CMEs), occurred during this first, active half of the interval. We determined the source locations of the CMEs and the type of associated region, such as active region, or quiet sun or active region prominence. To analyze the evolution of the events in the context of the global solar magnetic field and its evolution during the three rotations centered on CR 2068, we plotted the CME source locations onto synoptic maps of the photospheric magnetic field, of the magnetic and chromospheric structure, of the white light corona, and of helioseismological subsurface flows. Most of the CME sources were associated with the three dominant active regions on CR 2068, particularly AR 10989. Most of the other sources on all three CRs appear to have been associated with either isolated filaments or filaments in the north polar crown filament channel. Although calculations of the flux balance and helicity of the surface magnetic features did not clearly identify a dominance of one region over the others, helioseismological subsurface flows beneath these active regions did reveal a pronounced difference among them. These preliminary results suggest that the ??twistedness?? (i.e., vorticity and helicity) of subsurface flows and its temporal variation might be related to the CME productivity of active regions, similar to the relationship between flares and subsurface flows.  相似文献   
916.
Using a Markov chain model, we consider the regolith growth on a small body in orbit around Saturn, subject to meteoritic bombardment, and assuming all impact ejecta are re-collected. We calculate the growth of regolith and the fractional pollution, assuming an initial pure ice body and amorphous carbon as a pollutant. We extend the meteorite flux of Cuzzi and Estrada (Cuzzi, J., Estrada, P. [1998]. Icarus 132, 1-35) to larger sizes to consider the effect of disruption of the moonlet on other moonlets in the ensemble. This is a relatively small effect, completely negligible for moonlets of 1 m radius. For the given impact model, fractional pollution reaches 22% for 1 m bodies, but only 3% for 10 m bodies, 1.7% for 20 m bodies, and 1% for 30 m bodies after 4 byr. By considering an ensemble of moonlets, which have identical cross-sections for releasing and capturing ejecta, this analysis can be extended to a model of particles in Saturn’s rings, where the calculated spectra can be compared to observed ring spectra. The measured spectral reflectance of Saturn’s rings from Cassini observations therefore constrains the size and age of the ring particles. The comparison between 1 m, 10 m, 20 m, and 30 m particles confirms that for larger ring mass, the current rings would be less polluted; for the largest particles, we expect negligible changes in the UV spectrum after 4 byr of meteoritic bombardment. We consider two end members for mixing of the meteoritic material: areal and intimate. Given the uncertainties in the actual mixing of the meteoritic infall and in its composition (as a worst case, we assume the meteoritic material is 100% amorphous carbon, intimately mixed) initially pure ice 30 m ring particles would darken after 4 byr of exposure by 15%.  相似文献   
917.
We present a mineralogical assessment of 12 Maria family asteroids, using near-infrared spectral data obtained over the years 2000-2009 combined with visible spectral data (when available) to cover the spectral interval of 0.4-2.5 μm. Our analysis indicates the Maria asteroid family, which is located adjacent to the chaotic region of the 3:1 Kirkwood Gap, appears to be a true genetic family composed of assemblages analogous to mesosiderite-type meteorites. Dynamical models by Farinella et al. (Farinella, P., Gunczi, R., Froeschlé, Ch., Froeschlé, C., [1993]. Icarus 101, 174-187) predict this region should supply meteoroids into Earth-crossing orbits. Thus, the Maria family is a plausible source of some or all of the mesosiderites in our meteorite collections. These individual asteroids were most likely once part of a larger parent object that was broken apart and dispersed. One of the Maria dynamical family members investigated, ((695) Bella), was found to be unrelated to the genetic Maria family members. The parameters of (695) Bella indicate an H-chondrite assemblage, and that Bella may be a sister or daughter of Asteroid (6) Hebe.  相似文献   
918.
The plasmasphere sandwiched between the ionosphere and the outer magnetosphere is populated by up flow of ionospheric cold (∼1 eV) and dense plasma along geomagnetic field lines. Recent observations from various instruments onboard IMAGE and CLUSTER spacecrafts have made significant advances in our understanding of plasma density irregularities, plume formation, erosion and refilling of the plasmasphere, presence of thermal structures in the plasmasphere and existence of radiation belts. Still modeling work and more observational data are required for clear understanding of plasmapause formation, existence of various sizes and shapes of density structures inside the plasmasphere as well as on the surface of the plasmapause, plasmasphere filling and erosion processes; which are important in understanding the relation of the process proceeding in the Sun and solar wind to the processes observed in the Earth's atmosphere and ionosphere.  相似文献   
919.
In the present article a model of well behaved charged superdense star with surface density 2×1014 gm/cm3 is constructed by considering a static spherically symmetric metric with t=const hypersurfaces as hyperboloid. So far well behaved model described by such metric could not be obtained. Maximum mass of the star is found to be 0.343457M and the corresponding radius is 9.57459 km. The red shift at the centre and on the surface are given as 0.068887 and 0.031726 respectively.  相似文献   
920.
Every three years the IAU Working Group on Cartographic Coordinates and Rotational Elements revises tables giving the directions of the poles of rotation and the prime meridians of the planets, satellites, minor planets, and comets. This report takes into account the IAU Working Group for Planetary System Nomenclature (WGPSN) and the IAU Committee on Small Body Nomenclature (CSBN) definition of dwarf planets, introduces improved values for the pole and rotation rate of Mercury, returns the rotation rate of Jupiter to a previous value, introduces improved values for the rotation of five satellites of Saturn, and adds the equatorial radius of the Sun for comparison. It also adds or updates size and shape information for the Earth, Mars?? satellites Deimos and Phobos, the four Galilean satellites of Jupiter, and 22 satellites of Saturn. Pole, rotation, and size information has been added for the asteroids (21) Lutetia, (511) Davida, and (2867) ?teins. Pole and rotation information has been added for (2) Pallas and (21) Lutetia. Pole and rotation and mean radius information has been added for (1) Ceres. Pole information has been updated for (4) Vesta. The high precision realization for the pole and rotation rate of the Moon is updated. Alternative orientation models for Mars, Jupiter, and Saturn are noted. The Working Group also reaffirms that once an observable feature at a defined longitude is chosen, a longitude definition origin should not change except under unusual circumstances. It is also noted that alternative coordinate systems may exist for various (e.g. dynamical) purposes, but specific cartographic coordinate system information continues to be recommended for each body. The Working Group elaborates on its purpose, and also announces its plans to occasionally provide limited updates to its recommendations via its website, in order to address community needs for some updates more often than every 3 years. Brief recommendations are also made to the general planetary community regarding the need for controlled products, and improved or consensus rotation models for Mars, Jupiter, and Saturn.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号