排序方式: 共有54条查询结果,搜索用时 9 毫秒
51.
On the phenology of North Sea ichthyoplankton 总被引:2,自引:1,他引:2
Greve Wulf; Prinage Sabine; Zidowitz Heike; Nast Jutta; Reiners Frank 《ICES Journal of Marine Science》2005,62(7):1216-1223
52.
53.
With the Water Framework Directive (WFD) the European Commission (EC) is requested to define environmental quality standards for pollutants to protect aquatic life in surface waters. Quality standards have to be derived by a scientific risk assessment and should not be exceeded. The recommended quality standards are mainly based on long term toxicological tests with algae, crustaceans and fish. The lowest effect concentration is divided by an assessment factor between 10 and 1000, which considers the data quality and quantity. In this work funded by the German Länder Working Party on Water (Länderarbeitsgemeinschaft Wasser – LAWA) environmental quality standards for 40 considered relevant substances were derived for aquatic ecosystems. The data sheets cover the identification of the compounds, their behaviour in the environment (physical‐chemical properties, biotic and abiotic degradation, sorption, bioaccumulation), information about mode of action, uses, analytical determination and available quality criteria. Ecotoxicological effect concentrations for bacteria, algae, protozoa, aquatic plants, crustaceans, fish, amphibians, insects and molluscs are listed. For 17 of the 40 hazardous substances investigated, quality objectives above 1 μg/L were derived. For 12 substances the values were between 0.1 μg/L and 1 μg/L and for 5 substances lower than 0.1 μg/L. Incomplete ecotoxicological data sets of the remaining compounds do not allow the derivation of quality standards. Especially for drugs further ecotoxicological test results are needed. 相似文献
54.
The Emme Delta is a small glacilacustrine delta, which developed on the southern flank of the Wesergebirge Mountains in NW Germany. Shallow shear‐wave seismic surveys allow a detailed assessment of the structural style of the delta body. Two different fault systems are developed within the delta, both showing syn‐sedimentary activity. The faults have planar to slightly listric geometries and show vertical offsets in a range of 2–15 m. They form small graben and half‐graben systems, which locally show roll‐over structures. The fill of the half‐grabens has a wedge‐shaped geometry, with the greatest sediment thickness close to the fault. The fault system in the upper portion of the Emme Delta is restricted to the delta body and probably gravity induced. In the lower portion of the delta, normal faults occur that originate in the underlying Jurassic basement rocks and penetrate into the delta deposits. The grid of seismic lines shows that the normal faults are trending E–W. This fits to a late Triassic–early Jurassic deformation phase in the Central European Basin System. We hypothese that these faults were reactivated during the Pleistocene by the advancing ice‐sheet, water and sediment loading. Based on the seismic data set, an overall model for the reactivation of the basement fault was developed. The advancing ice‐sheet caused far field extension, which might have reactivated pre‐existing normal faults. Later, the fault activity was enhanced due to sediment and water loading. In addition, high pore pressure due to lake formation might have supported the slip processes along the faults. After glacial unloading and lake drainage, the fault activity stopped. 相似文献