首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   8篇
  国内免费   6篇
测绘学   2篇
大气科学   8篇
地球物理   53篇
地质学   53篇
海洋学   24篇
天文学   26篇
综合类   2篇
自然地理   19篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   4篇
  2017年   3篇
  2016年   6篇
  2015年   3篇
  2014年   7篇
  2013年   11篇
  2012年   5篇
  2011年   7篇
  2010年   4篇
  2009年   9篇
  2008年   12篇
  2007年   15篇
  2006年   3篇
  2005年   7篇
  2004年   10篇
  2003年   5篇
  2002年   5篇
  2001年   3篇
  2000年   6篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1988年   4篇
  1987年   4篇
  1986年   2篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
  1979年   4篇
  1978年   2篇
  1977年   1篇
  1972年   1篇
  1965年   1篇
  1961年   1篇
  1959年   1篇
  1937年   1篇
排序方式: 共有187条查询结果,搜索用时 54 毫秒
71.
Large-scale atmospheric circulation patterns determine the quantity and seasonality of precipitation, the major source of water in most terrestrial ecosystems. Oxygen isotope (δ18O) dynamics of the present-day hydrologic system in the Palouse region of the northwestern U.S.A. indicate a seasonal correlation between the δ18O values of precipitation and temperature, but no seasonal trends of δ18O records in soil water and shallow groundwater. Their isotope values are close to those of winter precipitation because the Palouse receives  75% of its precipitation during winter. Palouse Loess deposits contain late Pleistocene pedogenic carbonate having ca. 2 to 3‰ higher δ18O values and up to 5‰ higher carbon isotope (δ13C) values than Holocene and modern carbonates. The late Pleistocene δ18O values are best explained by a decrease in isotopically light winter precipitation relative to the modern winter-dominated infiltration. The δ13C values are attributed to a proportional increase of atmospheric CO2 in soil CO2 due to a decrease in soil respiration rate and 13C discrimination in plants under much drier paleoclimate conditions than today. The regional climate difference was likely related to anticyclonic circulation over the Pleistocene Laurentide and Ice Sheet.  相似文献   
72.
This study presents a 64-year(1951–2014) reconstruction of the surface mass balance of Glacier No. 31, located in the Suntar-Khayata Range of the eastern Siberia, where the ablation zone is characterized by the extensive dark ice surface. We use a temperature index-based glacier mass-balance model, which computes all major components of glacier mass budget and is forced by daily air temperature and precipitation from a nearby meteorological station. The glacier shows a mean annual mass balance of –0.35 m w.e.a~(–1) during the past 64 years, with an acceleration of –0.50 m w.e. a~(–1) during the recent years. A cumulative mass loss of the glacier is ~22.3 m w.e. over the study period, about 56% of which is observed during 1991–2014. In addition to the contribution of temperature rise and precipitation decrease to recent mass loss of the glacier, an experimental analysis, in which the cleanand dark ice surfaces are respectively assumed to cover the entire ablation zone, indicates that dark ice surface, caused by insoluble impurities consisting of mineral dusts, cryoconite granules, and ice algae, plays a crucial role in the changing mass balance through enhancing melt rates in the ablation zone of the glacier.  相似文献   
73.
We measured quantitatively colors of volcanic ash deposits erupted from three different styles of summit activity (Strombolian activity, Vulcanian explosions and continuous ash venting activity) at Sakurajima volcano from 1974 to 1985. Colors of Strombolian ash samples have larger yellow components of their visible spectra (b? values) than those of explosion and continuous venting ash samples. Colors of explosion ash samples show larger variation in both red and yellow components of their visible spectra (a? and b? values, respectively), while colors of continuous venting ash samples are in the narrow ranges within colors of explosion ash samples. Colors of components with lower densities than 3.1 g/cm3 (groundmass and phenocrystic plagioclase) obtained by magnetic and heavy liquid separation methods are similar to the unseparated bulk ash samples. This result suggests that the color variations of ash deposits are mainly originated from the particles composed of groundmass. The particles can be classified into three different types of particles with different vesicularity and crystallinity (vesicular particle [VP], dense particle with vesicles [DPV] and dense particle without vesicles [DP]). Analytical results of component proportions, chemical compositions of groundmass glasses, ferrous iron contents and surface ferric materials show that (1) VP has larger yellow components of the visible spectrum (b? values) and high ferrous iron content, and is less crystallized than the DP and DPV, (2) DP has larger red and yellow components of its visible spectrum (a? and b? values, respectively) and involves ferric materials on the surfaces produced by oxidation process, and (3) DPV has smaller red and yellow components of its visible spectrum (a? and b? values, respectively) and involves less ferric materials on the ash surfaces. Color differences of ash deposits from three different activity styles can be explained by the different mixing ratios of VP, DPV and DP. During the Strombolian activity, the VP is a main component in the ash, which is formed from relatively less degassed and crystallized magma. In the Vulcanian explosion and continuous ash venting activity, the proportions of DPV and DP in ash are larger than that in the Strombolian activity. The highly crystallized DP may correspond to a vent cap, and DPV to a magma below the cap. The color measurements of ash deposits provide information on the pre-eruptive processes at the shallower levels of a conduit.  相似文献   
74.
Continuous data of aerosol optical thickness monitored using differential optical absorption spectroscopy (DOAS) are correlated with the concentration of ground-measured suspended particulate matter (SPM). A high correlation is found between the DOAS and the ground SPM data, making it possible to calculate the mass extinction efficiency of the aerosols in the atmosphere. It is found that the value of mean mass extinction efficiency (MEE) varies over a range of 2.6–13.7m2 g?1, with smaller and larger values occurring for size distributions dominated by coarse and fine particles, respectively.  相似文献   
75.
76.
Using a multi-level numerical model, it is shown that the Subtropical Front and the Subtropical Countercurrent can be reproduced realistically in a highly idealized model, as a consequence of the coupling effect of wind driven gyre circulation and differential heating. In the model, the North Pacific Ocean is idealized as a rectangular flat-bottomed model ocean, and is driven by wind stress, which features the Westerlies and the Trades, and by heat flux through the sea surface formulated after Haney (1971).In the model ocean, a shallow front and an eastward current associated with the front are formed around the central latitude of the Subtropical Gyre, which show close similarities to the Subtropical Front and the Subtropical Countercurrent in the real ocean.Although the detailed mechanism of formation of the Subtropical Front and the Subtropical Countercurrent is not clarified in the present study, two factors are found inessential for the formation of the Subtropical Front and the Subtropical Countercurrent. First, the results of the model indicate that a small trough of wind stress curl in the lower latitudes of the Subtropical Gyre, which Yoshida and Kidokoro (1967a, b) attributed to the Subtropical Countercurrent, is not necessary for the formation of the Subtropical Front and the Subtropical Countercurrent, since they are reproduced well in the model without the trough. Second, using a model driven by meridional wind stress, it is shown that the meridional Ekman convergence, which many authors related to the Subtropical Front, is not essential for the formation of the Subtropical Front and the Subtropical Countercurrent.  相似文献   
77.
A nine-year-long record of the northeastward volume transport (NVT) in the region southeast of Okinawa Island from 1992 to 2001 was estimated by an empirical relation between the volume transport obtained from the ocean mooring data and the sea surface height anomaly difference across the observation line during 270 days from November 2000. The NVT had large variations ranging from −10.5 Sv (1 Sv ≡ 106 m3s−1) to 30.0 Sv around its mean of 4.5 Sv with a standard deviation of 5.5 Sv. This large variation was accompanied by mesoscale eddies from the east, having a pronounced period from 106 to 160 days. After removal of the eddy, NVT was found to fluctuate from 2 Sv to 12 Sv with a quasi-biennial period.  相似文献   
78.
We deployed two profiling floats in the region south of the Kuroshio Extension in March 2000. Temperature and salinity profiles from a depth of 1500 × 104 Pa to the surface are reported every two and four weeks, respectively. The floats performed very well for first four months after deployment. Later they failed in surfacing for a few months when the sea surface temperature in the region was high. The salinity sensors seemed to suffer from some damage during their failure-in-surfacing period. Despite this trouble, the results clearly demonstrate that the profiling float is a very useful and cost-effective tool for physical oceanographic observation in the open sea. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
79.
The North Pacific Central Mode Water (CMW) is a water mass that forms in the Kuroshio-Oyashio Extension (KOE) region with characteristic low potential vorticity. Recent studies have suggested that the CMW, as low potential vorticity water, plays an important role in the adjustment of the subtropical gyre and subsurface variability on decadal to interdecadal timescales. We have forced a realistic ocean general circulation model (OGCM) with observed wind stress and sea surface temperature (SST) forcing to investigate the decadal variations of the CMW. Associated with the large atmospheric changes after the mid-1970s climate regime shift, the upper thermocline experiences a cooling as negative SST anomalies in the central North Pacific are subducted and advected southward. In addition to this thermodynamic response, the CMW’s path shifts anomalously eastward in response to anomalous Ekman pumping. This eastward shift of the core of the CMW produces a lowering of the isotherms, and a consequent warming, on the path of the CMW core. This warming partially counteracts the cooling associated with subducted surface anomalies, and it may be responsible for the reduced temperature variations at the climatological position of the CMW when both anomalous wind and heat fluxes are given. Lateral induction across the sloping bottom of the winter mixed layer in the KOE is critical to the formation of the low potential vorticity CMW. Coarse resolution models, which are widely used in climate modeling, underestimate the horizontal gradient of the mixed layer depth and form only a weak CMW or none at all. We have conducted a coarse resolution experiment with the same OGCM, showing that the subsurface response is much reduced. In particular, there is no dynamic warming in the CMW and the thermodynamic response to the SST cooling dominates. The resultant total response differs substantially from that in the finer resolution run where a strong CMW forms. This sensitivity to the model resolution corroborates the important dynamical role that the CMW may play with its distinctive low potential vorticity character and calls for its improved simulation.  相似文献   
80.
Iridium concentration in extra-terrestrial bodies is an important quantity in relation to Ir-rich geological layers. Ir concentration of a Yamato carbonaceous chondrite (Y-793321) has been measured by a neutron activation method. The measurement yields a value (0.57 ± 0.06) g per gramme for the chondrite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号