首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   6篇
  国内免费   3篇
大气科学   23篇
地球物理   18篇
地质学   21篇
海洋学   28篇
天文学   4篇
综合类   1篇
自然地理   4篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2017年   2篇
  2016年   14篇
  2015年   3篇
  2014年   7篇
  2013年   8篇
  2012年   1篇
  2011年   10篇
  2010年   7篇
  2009年   1篇
  2008年   7篇
  2007年   5篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   8篇
  2001年   4篇
  2000年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
  1986年   1篇
排序方式: 共有99条查询结果,搜索用时 359 毫秒
41.
42.
In this study, a Updateable Model Output Statistics (UMOS) system has been developed for the forecast of 3-h temperature over South Korea using two significantly different models’ (Regional Data Assimilation and Prediction System (RDAPS) and Korea Meteorological Administration (KMA) Weather Research and Forecasting (WRF) model (KWRF)) outputs based on the Canadian UMOS system (Wilson and Vallee, 2002; 2003). The UMOS system is designed to consider the local climatology and the model’s forecasting skills. The 20 most frequently selected potential predictors for each season, station, and forecast projection time from the 67 potential predictors of the Model Output Statistics (MOS) system, were used as potential predictors of the UMOS system. The UMOS equations are developed by a weighted blending of the new and old model data, with weights chosen to emphasize the new model data while including enough old model data in the development to ensure stable equations and a smooth transition to dependency on the new model. The UMOS equations were updated regularly at a predefined time interval to consider the changes of covariance structure between the new model output and observations as the new model data increase. The validation results showed that seasonal mean bias, Root Mean Square Error (RMSE), and correlation coefficients for the total forecast projection times are ?0.379~0.055°C, 1.951~2.078°C, and 0.741~0.965, respectively. Although, the forecasting skills of UMOS system are very consistent without regard to the season and geographic location, the performance is slightly better in autumn and winter than in spring and summer, and better in coastal regions than in inland region. When we take into account the significant differences of the RDAPS and KWRF, the UMOS system can be used as a supplementary forecasting tool of the MOS system for 3-h temperature over South Korea. However, the UMOS system is very sensitive to the selected number and/or types of predictors. Therefore, more work is needed to enable the use of the UMOS system in operation, including tuning of the number and types of potential predictors and automation of the updating processes of the UMOS equations.  相似文献   
43.
The objective of this study is to perform a preliminary national-scale assessment of the landslide susceptibility of rock-cut slopes along expressways in Korea. A geographic information system (GIS) database was compiled based on data from topographical and geological maps, and rock-cut slope data, including the locations of past landslides. Seven factors (i.e., slope height, slope length, slope gradient, upper slope gradient, lithology, distance from nearest fault, and dip direction of slope) were extracted from the GIS database to assess the relationship between each factor and landslide events. Weight of evidence (WOE), analytic hierarchy process (AHP), and fuzzy logic methods, as well as hybrid methods, were used to establish the rating of classes for each factor, weightings for the factors, and to combine multiple factor layers into landslide-susceptibility maps. A comparison of the results obtained using several different methods, based on the area under curve technique, revealed that the WOE method showed the highest accuracy of 74%. The annual cost of traffic congestion resulting from slope failures was evaluated to identify those rock-cut slopes where detailed investigations and landslide warning systems are required.  相似文献   
44.
Magnetotelluric (MT) surveys were conducted in Pohang, Korea, for low-temperature geothermal exploration in 2002 and 2003. Pohang is located in the southeastern part of the Korean Peninsula and close to the East Sea. In the interpretation of MT data from a coastal environment, sea effects must be correctly included because seawater is a strong conductor. We first constructed a five-layered earth model with a realistic coastline and bathymetry to investigate sea effects on MT data measured in Pohang. This model clearly shows that the Pohang data are significantly influenced by sea water at frequencies blow 1 Hz at the whole measurement sites. Next, we utilized a three-dimensional inversion algorithm based on the Gauss–Newton approach to produce a reliable resistivity model. Seawater is excluded from the inversion domain to fix the resistivity, while included in the modeling domain to simulate sea effects on MT responses. Blocks for the sub-seafloor are included in unknown parameters since they are sufficiently close to the survey area to affect MT responses in Pohang. Static shifts are also considered in inversion for more accurate interpretation. The rms data misfit is smoothly reduced from 11.2 to 1.87 after 7 iterations. The resulting resistivity model shows a pattern of low–high–low resistivity with depth. The model is compatible with resistivity logs obtained from four boreholes in the survey area, and can explain major geological features in Pohang.  相似文献   
45.
In this study, the regional climate of the Korean Peninsula (KP) was dynamically downscaled using a high-resolution regional climate model (RCM) forced by multi- representative concentration pathways (RCP) scenarios of HadGEM2-AO, and changes in summer precipitation were investigated. Through the evaluation of the present climate, the RCM reasonably reproduced long-term climatology of summer precipitation over the KP, and captured the sub-seasonal evolution of Changma rain-band. In future projections, all RCP experiments using different RCP radiative forcings (i.e., RCP2.6, RCP4.5, RCP6.0, and RCP8.5 runs) simulated an increased summer precipitation over the KP. However, there were some differences in changing rates of summer precipitation among the RCP experiments. Future increases in summer precipitation were affected by future changes in moisture convergence and surface evaporation. Changing ranges in moisture convergences among RCP experiments were significantly larger than those in surface evaporation. This indicates that the uncertainty of changes in summer precipitation is related to the projection of the monsoon circulation, which determines the moisture convergence field through horizontal advection. Changes in the sub-seasonal evolution of Changma rain-band were inconsistent among RCP experiments. However, all experiments showed that Changma rain-band was enhanced during late June to early July, but it was weakened after mid-July due to the expansion of the western North Pacific subtropical high. These results indicate that precipitation intensity related to Changma rain-band will be increased, but its duration will be reduced in the future.  相似文献   
46.
This study aims to examine the favorable conditions for an ocean effect snowstorm across the Yellow Sea over the southwestern coast of Korea on 21 December 2005, using a coupled model with a Coupled Ocean/Atmosphere Mesoscale Prediction System as the atmospheric component and the Regional Ocean Modeling System as the oceanic component. Simulation of heavy snowfall event, which was 44.3 cm of snow accumulated in 24-hour, was performed to investigate the mesoscale structure, dynamics and development mechanisms in the snowstorm. As a result from 48-hour integration, the results of simulation showed that barotropic instability and turbulent heat fluxes played important roles in the formation of snowstorm. The enhanced surface diabatic heating was dominant in the latent heat flux, and eventually induced convective instability. An additional factor was the favorable condition of synoptic environment, accessing the cold air transport by the approach of the upper-level cold vortex over the warm ocean. Besides these factors, conditional symmetric instability (CSI) is a mechanism which can result in a heavy snowfall with sufficient moisture and upward vertical motion. A slantwise convection from the release of CSI could support a complex snowfall event with heavier than expected amounts. The result comparison between a coupled model and an uncoupled model supports that airsea coupling has an impact of decreasing of about 10% in a snowfall amount on the snowstorm.  相似文献   
47.
In this study, a mathematical model has been developed that can compute various hydrodynamic characteristics of a multiple-row curtainwall-pile breakwater. To examine the validity of the developed model, laboratory experiments have been conducted for double- and triple-row breakwaters with various combinations of drafts of curtain walls, porosities between piles, and distances between rows. Comparisons between measurement and prediction show that the mathematical model adequately reproduces most of the important features of the experimental results. As a whole, the transmission coefficient decreases with an increase in relative water depth, whereas the reflection coefficient, normalized run-up and force exhibit an opposite trend in their variations. With fixed values of the draft of the curtain wall and the porosity of lower perforated part of the first row of a double-row breakwater, as these values of the second row increase and decrease, respectively, the transmission coefficient decreases, as expected. On the other hand, their effects on wave reflection, run-up, and wave force change with the relative depth. As for the distance between the rows, the transmission coefficient becomes a maximum when it is about one half of the wave length, suggesting that this condition should be avoided to achieve the advantage of the breakwater in reducing wave transmission. It is shown that for prototype breakwaters, on an average, the transmission coefficient would be smaller than 0.3 for wave periods less than 6.0 s, and it would be about 0.45 even for the wave period of 9.0 s, although there would be a variation depending on the geometry of the breakwater. It is also shown that wave transmission is significantly reduced by multiple-row breakwaters compared with a single-row breakwater, while the difference between double-row and triple-row breakwaters is marginal. Finally, engineering monograms are provided for double-row breakwaters to be used in practical engineering applications of the breakwaters.  相似文献   
48.
A technique is developed to separate the incident and reflected waves propagating on a known current in a laboratory wave–current flume by analyzing wave records measured at two or more locations using a least squares method. It can be applied to both regular and irregular waves. To examine its performance, numerical tests are made for waves propagating on quiescent or flowing water. In some cases, to represent the signal noise and measurement error, white noise is superimposed on the numerically generated wave signal. For all the cases, good agreement is observed between target and estimation.  相似文献   
49.
50.
An analytic solution to the mild slope equation is derived for waves propagating over an axi-symmetric pit located in an otherwise constant depth region. The water depth inside the pit decreases in proportion to an integer power of radial distance from the pit center. The mild slope equation in cylindrical coordinates is transformed into ordinary differential equations by using the method of separation of variables, and the coefficients of the equation in radial direction are transformed into explicit forms by using the direct solution for the wave dispersion equation by Hunt (Hunt, J.N., 1979. Direct solution of wave dispersion equation. J. Waterw., Port, Coast., Ocean Div., Proc. ASCE, 105, 457–459). Finally, the Frobenius series is used to obtain the analytic solution. Due to the feature of the Hunt's solution, the present analytic solution is accurate in shallow and deep waters, while it is less accurate in intermediate depth waters. The validity of the analytic solution is demonstrated by comparison with numerical solutions of the hyperbolic mild slope equations. The analytic solution is also used to examine the effects of the pit geometry and relative depth on wave transformation. Finally, wave attenuation in the region over the pit is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号