首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   10篇
  国内免费   2篇
测绘学   1篇
大气科学   18篇
地球物理   43篇
地质学   82篇
海洋学   21篇
天文学   39篇
综合类   1篇
自然地理   7篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   5篇
  2018年   7篇
  2017年   3篇
  2016年   11篇
  2015年   11篇
  2014年   3篇
  2013年   15篇
  2012年   6篇
  2011年   16篇
  2010年   12篇
  2009年   18篇
  2008年   7篇
  2007年   11篇
  2006年   15篇
  2005年   8篇
  2004年   5篇
  2003年   8篇
  2002年   10篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1998年   5篇
  1997年   1篇
  1996年   3篇
  1994年   2篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
排序方式: 共有212条查询结果,搜索用时 31 毫秒
101.
Late Quaternary histories of two North American desert biomes—C4 grasslands and C3 shrublands—are poorly known despite their sensitivity and potential value in reconstructing summer rains and winter temperatures. Plant macrofossil assemblages from packrat midden series in the northern Chihuahuan Desert show that C4 grasses and annuals typical of desert grassland persisted near their present northern limits throughout the last glacial–interglacial cycle. By contrast, key C3 desert shrubs appeared somewhat abruptly after 5000 cal. yr BP. Bioclimatic envelopes for select C4 and C3 species are mapped to interpret the glacial–interglacial persistence of desert grassland and the mid‐to‐late Holocene expansion of desert shrublands. The envelopes suggest relatively warm Pleistocene temperatures with moist summers allowed for persistence of C4 grasses, whereas winters were probably too cold (or too wet) for C3 desert shrubs. Contrary to climate model results, core processes associated with the North American Monsoon and moisture transport to the northern Chihuahuan Desert remained intact throughout the last glacial–interglacial cycle. Mid‐latitude effects, however, truncated midsummer (July–August) moisture transport north of 35° N. The sudden expansion of desert shrublands after 5000 cal. yr BP may be a threshold response to warmer winters associated with increasing boreal winter insolation, and enhanced El Niño–Southern Oscillation variability. Published in 2006 by John Wiley & Sons, Ltd.  相似文献   
102.
La Ceiba, Honduras, a city of about 200,000 people, lies along the Caribbean Sea, nestled against a mountain range and the Rio Cangrejal. The city faces three flooding risks: routine flooding of city streets due to the lack of a stormwater drainage system; occasional major flooding of the Rio Cangrejal, which flows through the city; and flooding from heavy rainfall events and storm surges associated with tropical cyclones. In this study, we applied a method developed for the U.S. Agency for International Development and then worked with stakeholders in La Ceiba to understand climate change risks and evaluate adaptation alternatives. We estimated the impacts of climate change on the current flooding risks and on efforts to mitigate the flooding problems. The climate change scenarios, which addressed sea level rise and flooding, were based on the Intergovernmental Panel on Climate Change estimates of sea level rise (Houghton et al. 2001) and published literature linking changes in temperature to more intense precipitation (Trenberth et al., Bull Am Meteorol Soc, 84:1205–1217, 2003) and hurricanes (Knutson and Tuleya, J Clim, 17:3477–3495, 2004). Using information from Trenberth et al., Bull Am Meteorol Soc, 84:1205–1217, (2003) and Knutson and Tuleya, J Clim, 17:3477–3495, 2004, we scaled intense precipitation and hurricane wind speed based on projected temperature increases. We estimated the volume of precipitation in intense events to increase by 2 to 4% in 2025 and by 6 to 14% by 2050. A 13% increase in intense precipitation, the high scenario for 2050, could increase peak 5-year flood flows by about 60%. Building an enhanced urban drainage system that could cope with the estimated increased flooding would cost one-third more than building a system to handle current climate conditions, but would avoid costlier reconstruction in the future. The flow of the Rio Cangrejal would increase by one-third from more intense hurricanes. The costs of raising levees to protect the population from increased risks from climate change would be about $1 million. The coast west of downtown La Ceiba is the most vulnerable to sea level rise and storm surges. It is relatively undeveloped, but is projected to have rapid development. Setbacks on coastal construction in that area may limit risks. The downtown coastline is also at risk and may need to be protected with groins and sand pumping. Stakeholders in La Ceiba concluded that addressing problems of urban drainage should be a top priority. They emphasized improved management of the Rio Cangrejal watershed and improved storm warnings to cope with risks from extreme precipitation and cyclones. Adoption of risk management principles and effective land use management could also help reduce risks from current climate and climate change.  相似文献   
103.
While most long-term mitigation scenario studies build on a broad portfolio of mitigation technologies, there is quite some uncertainty about the availability and reduction potential of these technologies. This study explores the impacts of technology limitations on greenhouse gas emission reductions using the integrated model IMAGE. It shows that the required short-term emission reductions to achieve long-term radiative forcing targets strongly depend on assumptions on the availability and potential of mitigation technologies. Limited availability of mitigation technologies which are relatively important in the long run implies that lower short-term emission levels are required. For instance, limited bio-energy availability reduces the optimal 2020 emission level by more than 4 GtCO2eq in order to compensate the reduced availability of negative emissions from bioenergy and carbon capture and storage (BECCS) in the long run. On the other hand, reduced mitigation potential of options that are used in 2020 can also lead to a higher optimal level for 2020 emissions. The results also show the critical role of BECCS for achieving low radiative forcing targets in IMAGE. Without these technologies achieving these targets become much more expensive or even infeasible.  相似文献   
104.
Snowpacks and forests have complex interactions throughout the large range of altitudes where they co-occur. However, there are no reliable data on the spatial and temporal interactions of forests with snowpacks, such as those that occur in nearby areas that have different environmental conditions and those that occur during different snow seasons. This study monitored the interactions of forests with snowpacks in four forest stands in a single valley of the central Spanish Pyrenees during three consecutive snow seasons (2015/2016, 2016/2017 and 2017/2018). Daily snow depth data from time-lapse cameras were compared with snow data from field surveys that were performed every 10–15 days. These data thus provided information on the spatial and temporal changes of snow–water equivalent (SWE). The results indicated that forest had the same general effects on snowpack in each forest stand and during each snow season. On average, forest cover reduced the duration of snowpack by 17 days, reduced the cumulative SWE of the snowpack by about 60% and increased the spatial heterogeneity of snowpack by 190%. Overall, forest cover reduced SWE total accumulation by 40% and the rate of SWE accumulation by 25%. The forest-mediated reduction of the accumulation rate, in combination with the occasional forest-mediated enhancement of melting rate, explained the reduced duration of snowpacks beneath forest canopies. However, the magnitude and timing of certain forest effects on snowpack had significant spatial and temporal variations. This variability must be considered when selecting the location of an experimental site in a mountainous area, because the study site should be representative of surrounding areas. The same considerations apply when selecting a time period for study.  相似文献   
105.
Deformation structures below the basal plane of gravitational slides can provide useful information about the state of stress undergone by rocks prior to the sliding process and about the triggering forces acting at each particular sliding event. In the present work we conducted a structural analysis of the rocks below the surface of the gravitational slide of Tazo (La Gomera, Canary Islands) and determined the epigenetic processes involved in the filling of the amphitheatre. We also inferred the possible triggering phenomena related to the Tazo landslide. The rocks located below the surface of the gravitational slide of Tazo -i.e., the basaltic lava flows, sills and dikes of the Lower Old Edifice and the submarine volcanic rocks, gabbros, pyroxenites and dikes of the Basal Complex of La Gomera- are strongly deformed close to this sliding surface. The lava flows and dikes of the Lower Old Edifice are folded, with fault breccias and gouges, and locally foliated, defining the sliding surface. The dikes of the Basal Complex are also folded, and the gabbros and pyroxenites are affected by a large number of small faults. In the Basal Complex, the sliding surface is defined by a foliated granular gouge. In the damage zone, the Basal Complex rocks show an incipient fracture cleavage. The sliding amphitheatre has been filled by the debris avalanche or cohesive debris flow generated within the slide, as well as by later debris flows, hyperconcentrated flows, sheet flows, and by interspersed lava flows from the Upper Old Edifice. We suggest here that the collapse of the north-western flank of the Lower Old Edifice at Tazo could in part have been triggered by continuous magma injection, associated with the emplacement of dikes in a rift zone with an ENE-WSW direction, enhanced by the mechanical weakness of the Basal Complex unit, which was affected by hydrothermal metamorphism under greenschist facies conditions and by the displacement along the Montaña de Alcalá and Guillama normal faults, which are deeply entrenched in the altered rocks of the Basal Complex.  相似文献   
106.
The Water Framework Directive, under the European Legislation, requires that all European waters, should reach a good ecological status by 2015. To achieve this goal, a phytoplankton monitoring network with monthly water samplings was established to evaluate the ecological quality, in the coastal waters of the Community of Valencia, and the collected data have allowed us to study the efficiency of the monthly campaigns of the monitoring network. With the results obtained in this research, we have designed a new monitoring strategy for the coastal waters of Valencia that for certain water bodies can mean lower sampling frequency. The new monitoring policy provides results as reliable as the previous strategy and allows a precise ecological classification of water bodies at a lower cost. The methodologies we have developed can be used in other monitoring networks and are not limited by geographic location or by the type of water body.  相似文献   
107.
108.
We compute masses and densities for 10 periodic comets with known sizes: 1P/Halley, 2P/Encke, 6P/d'Arrest, 9P/Tempel 1, 10P/Tempel 2, 19P/Borrelly, 22P/Kopff, 46P/Wirtanen, 67P/Churyumov–Gerasimenko and 81P/Wild 2. The method follows the one developed by Rickman and colleagues, which is based on the gas production curve and on the change in the orbital period due to the non-gravitational force. The gas production curve is inferred from the visual light curve. We found that the computed masses cover more than three orders of magnitude:  ≃(0.3–400) × 1012  kg. The computed densities are in all cases very low (≲0.8 g cm−3), with an average value of 0.4 g cm−3, in agreement with previous results and models of the cometary nucleus depicting it as a very porous object. The computed comet densities turn out to be the lowest among the different populations of Solar system minor bodies, in particular as compared to those of near-Earth asteroids (NEAs). We conclude that the model applied in this paper, in spite of its simplicity (as compared to more sophisticated thermophysical models applied to very few comets), is useful for a statistical approach to the mean density of the cometary nuclei. However, we cannot assess from this simple model if there is a real dispersion among the bulk densities of comets that could tell us about differences in physical structure (porosity) and/or chemical composition.  相似文献   
109.
Future climate trends for the Southwestern US, based on the climate models included in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report, project a more arid climate in the region during the 21st century. However, future climate variability associated with El Niño Southern Oscillation (ENSO)—an important driver for winter climate variability in the region—have not been addressed. In this work we evaluate future winter ENSO projections derived from two selected IPCC models, and their effect on Southwestern US climate. We first evaluate the ability of the IPCC coupled models to represent the climate of the Southwest, selecting the two models that best capture seasonal precipitation and temperature over the region and realistically represent ENSO variability (Max Planck Institute’s ECHAM5 and the UK Met Office HadCM3). Our work shows that the projected future aridity of the region will be dramatically amplified during La Niña conditions, as anomalies over a drier mean state, and will be characterized by higher temperatures (~0.5°C) and lower precipitation (~3 mm/mnt) than the projected trends. These results have important implications for water managers in the Southwest who must prepare for more intense winter aridity associated with future ENSO conditions.  相似文献   
110.
Abstract

We evaluate a set of current measurements done in a section of the Strait of Juan de Fuca. The flow is of estuarine character, the upper layer flow usually being directed seaward. The RMS value of steady current exceeds its mean value appreciably in the upper layer; it also exceeds the mean near the bottom. The near‐surface currents do change their direction on occasions and can run landward for over five consecutive days, especially in the southern part of the channel. The lower layer flow (landward) and the upper layer flow (seaward) varied in magnitude from 90 to 160 thousand m3/sec, and their fluctuations were in phase; their difference, the net flow, is of the order of 5% to 10% of these flows and could not be calculated with any confidence. Tidal motion is barotropic in the section, with some deformation in the vertical caused by bottom friction and internal stresses. The M2 tide in the system Juan de Fuca‐Georgia Strait can be represented by a standing Kelvin wave influenced by friction. The K1 tide can also be represented by a standing Kelvin wave if some leakage is allowed in the northern end of Georgia Strait. Topographic effects mask the Coriolis influence on the intensity of tidal currents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号