全文获取类型
收费全文 | 307篇 |
免费 | 14篇 |
国内免费 | 3篇 |
专业分类
测绘学 | 10篇 |
大气科学 | 40篇 |
地球物理 | 73篇 |
地质学 | 105篇 |
海洋学 | 22篇 |
天文学 | 53篇 |
自然地理 | 21篇 |
出版年
2024年 | 1篇 |
2023年 | 2篇 |
2022年 | 3篇 |
2021年 | 5篇 |
2020年 | 8篇 |
2019年 | 11篇 |
2018年 | 13篇 |
2017年 | 14篇 |
2016年 | 12篇 |
2015年 | 14篇 |
2014年 | 16篇 |
2013年 | 25篇 |
2012年 | 15篇 |
2011年 | 38篇 |
2010年 | 17篇 |
2009年 | 29篇 |
2008年 | 17篇 |
2007年 | 17篇 |
2006年 | 7篇 |
2005年 | 10篇 |
2004年 | 13篇 |
2003年 | 9篇 |
2002年 | 9篇 |
2001年 | 6篇 |
1999年 | 3篇 |
1998年 | 3篇 |
1996年 | 1篇 |
1993年 | 1篇 |
1991年 | 1篇 |
1987年 | 1篇 |
1977年 | 1篇 |
1976年 | 2篇 |
排序方式: 共有324条查询结果,搜索用时 15 毫秒
21.
Florence Habets Julien Boé Michel Déqué Agnès Ducharne Simon Gascoin Ali Hachour Eric Martin Christian Pagé Eric Sauquet Laurent Terray Dominique Thiéry Ludovic Oudin Pascal Viennot 《Climatic change》2013,121(4):771-785
This study presents an analysis of climate-change impacts on the water resources of two basins located in northern France, by integrating four sources of uncertainty: climate modelling, hydrological modelling, downscaling methods, and emission scenarios. The analysis focused on the evolution of the water budget, the river discharges and piezometric heads. Seven hydrological models were used, from lumped rainfall-discharge to distributed hydrogeological models, and led to quite different estimates of the water-balance components. One of the hydrological models, CLSM, was found to be unable to simulate the increased water stress and was, thus, considered as an outlier even though it gave fair results for the present day compared to observations. Although there were large differences in the results between the models, there was a marked tendency towards a decrease of the water resource in the rivers and aquifers (on average in 2050 about ?14 % and ?2.5 m, respectively), associated with global warming and a reduction in annual precipitation (on average in 2050 +2.1 K and ?3 %, respectively). The uncertainty associated to climate models was shown to clearly dominate, while the three others were about the same order of magnitude and 3–4 times lower. In terms of impact, the results found in this work are rather different from those obtained in a previous study, even though two of the hydrological models and one of the climate models were used in both studies. This emphasizes the need for a survey of the climatic-change impact on the water resource. 相似文献
22.
Multiscale asymptotics are used to derive three systems of equations connecting the planetary geostrophic (PG) equations for gyre-scale flow to a quasigeostrophic (QG) equation set for mesoscale eddies. Pedlosky (1984), following similar analysis, found eddy buoyancy fluxes to have only a small effect on the large-scale flow; however, numerical simulations disagree. While the impact of eddies is relatively small in most regions, in keeping with Pedlosky’s result, eddies have a significant effect on the mean flow in the vicinity of strong, narrow currents.First, the multiple-scales analysis of Pedlosky is reviewed and amplified. Novel results of this analysis include new multiple-scales models connecting large-scale PG equations to sets of QG eddy equations. However, only introducing anisotropic scaling of the large-scale coordinates allows us to derive a model with strong two-way coupling between the QG eddies and the PG mean flow. This finding reconciles the analysis with simulations, viz. that strong two-way coupling is observed in the vicinity of anisotropic features of the mean flow like boundary currents and jets. The relevant coupling terms are shown to be eddy buoyancy fluxes. Using the Gent-McWilliams parameterization to approximate these fluxes allows solution of the PG equations with closed tracer fluxes in a closed domain, which is not possible without mesoscale eddy (or other small-scale) effects. The boundary layer width is comparable to an eddy mixing length when the typical eddy velocity is taken to be the long Rossby wave phase speed, which is the same result found by Fox-Kemper and Ferrari (2009) in a reduced gravity layer. 相似文献
23.
Abstract The annulus model considers convection between concentric cylinders with sloping endwalls. It is used as a simplified model of convection in a rapidly rotating sphere. Large azimuthal wavenumbers are preferred in this problem, and this has been exploited to develop an asymptotic approach to nonlinear convection in the annulus. The problem is further reduced because the Taylor-Proudman constraint simplifies the dependence in the direction of the rotation vector, so that a nonlinear system dependent only on the radial variable and time results. As Rayleigh number is increased a sequence of bifurcations is found, from steady solutions to periodic solutions and 2-tori, typically ending in chaotic behaviour. Both the magnetic (MHD convection) and non-magnetic problem has been considered, and in the non-magnetic case our bifurcation sequence can be compared with those found by previous two-dimensional numerical simulations. 相似文献
24.
Karen Guihou Julien Marmain Yann Ourmières Anne Molcard Bruno Zakardjian Philippe Forget 《Ocean Dynamics》2013,63(7):793-808
The Northern current is the main circulation feature of the North-Western Mediterranean Sea. While the large-scale to mesoscale variability of the northern current (NC) is well known and widely documented for the Ligurian region, off Nice or along the Gulf of Lions shelf, few is known about the current instabilities and its associated mesoscale dynamics in the intermediate area, off Toulon. Here, we took advantage of an oceanographic cruise of opportunity, the start of a HF radar monitoring programme in the Toulon area and the availability of regular satellite sea surface temperature and chlorophyll a data, to evaluate the realism of a NEMO-based regional high-resolution model and the added value brought by HF radar. The combined analysis of a 1/64° configuration, named GLAZUR64, and of all data sets revealed the occurrence of an anticyclonic coastal trapped eddy, generated inside a NC meander and passing the Toulon area during the field campaign. We show that this anticyclonic eddy is advected downstream along the French Riviera up to the study region and disturbs the Northern current flow. This study aims to show the importance of combining observations and modelling when dealing with mesoscale processes, as well as the importance of high-resolution modelling. 相似文献
25.
Charlotte Prud'homme Riccardo Vassallo Christian Crouzet Julien Carcaillet Jean-Louis Mugnier Joaquin Cortés-Aranda 《地球表面变化过程与地形》2020,45(5):1168-1180
Cosmogenic nuclide dating of glacial landforms may lead to ambiguous results for ice retreat histories. The persistence of significant cosmogenic concentrations inherited from previous exposure may increase the apparent exposure ages for polished bedrocks affected by limited erosion under ice and for erratic boulders transported by glaciers and previously exposed in high-altitude rock walls. In contrast, transient burying by moraines, sediments and snow decreases the apparent exposure age. We propose a new sampling strategy, applied to four sites distributed in the Arc and Arve valleys in the Western Alps, to better constrain the factors that can bias exposure ages associated with glacial processes. We used the terrestrial cosmogenic nuclide 10Be (TCN) to estimate the exposure time from paired sampling of depth profiles in polished bedrock and on overlying erratic boulders. For a given sampling site, the exposure ages for both the polished bedrock and boulder are expected to be the same. However, in six cases out of seven, boulders had significantly higher 10Be surface concentrations than those of the associated polished surfaces. In present and past glacial processes, the 10Be distribution with depth for boulders and bedrocks implies the presence of an inheritance concentration of 10Be. Our study suggests that 10Be concentrations in erratic boulders and in polished bedrocks provide maximum and minimum exposure ages of the glacial retreat, respectively. © 2019 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd 相似文献
26.
Xavi Gallach Julien Carcaillet Ludovic Ravanel Philip Deline Christophe Ogier Magali Rossi Emmanuel Malet David Garcia-Sellés 《地球表面变化过程与地形》2020,45(13):3071-3091
In the Mont Blanc massif (European Western Alps), rockfalls are one of the main natural hazards for alpinists and infrastructure. Rockfall activity after the Little Ice Age is well documented. An increase in frequency during the last three decades is related to permafrost degradation caused by rising air temperatures. In order to understand whether climate exerts a long-term control on rockfall occurrence, a selection of paleo-rockfall scars was dated in the Glacier du Géant basin [>3200 m above sea level (a.s.l.)] using terrestrial cosmogenic nuclides. Rockfall occurrence was compared to different climatic and glacial proxies. This study presents 55 new samples (including replicates) and 25 previously-published ages from nine sampling sites. In total, 62 dated rockfall events display ages ranging from 0.03 ± 0.02 ka to 88.40 ± 7.60 ka. Holocene ages and their uncertainties were used to perform a Kernel density function into a continuous dataset displaying rockfall probability per 100 years. Results highlight four Holocene periods of enhanced rockfall occurrence: (i) c. 7–5.7 ka, related to the Holocene Warm Periods; (ii) c. 4.5–4 ka, related to the Sub-boreal Warm Period; (iii) c. 2.3–1.6 ka, related to the Roman Warm Period; and (iv) c. 0.9–0.3 ka, related to the Medieval Warm Period and beginning of the Little Ice Age. Laser and photogrammetric three-dimensional (3D) models of the rock walls were produced to reconstruct the detached volumes from the best-preserved rockfall scars (≤0.91 ± 0.12 ka). A structural study was carried out at the scale of the Glacier du Géant basin using aerial photographs, and at the scale of four selected rock walls using the 3D models. Two main vertical and one horizontal fracture sets were identified. They correspond respectively to alpine shear zones and veins opened-up during long-term exhumation of the Mont Blanc massif. Our study confirms that climate primarily controls rockfall occurrence, and that structural settings, coincident at both the massif and the rock wall scales, control the rock-wall shapes as well as the geometry and volume of the rockfall events. © 2020 John Wiley & Sons, Ltd. 相似文献
27.
Violaine Ponsin Amélie Chablais Julien Dumont Olivier Radakovitch Patrick Höhener 《Ground Water Monitoring & Remediation》2015,35(2):30-38
The objective of this study was to investigate whether 222Rn in groundwater can be used as a tracer for light non‐aqueous phase liquid (LNAPL) quantification at a field site treated by dual‐phase LNAPL removal. After the break of a pipeline, 5 ha of soil in the nature reserve Coussouls de Crau in southern France was contaminated by 5100 m3 of crude oil. Part of this oil seeped into the underlying gravel aquifer and formed a floating oil body of about 3.9 ha. The remediation consists of plume management by hydraulic groundwater barriers and LNAPL extraction in the source zone. 222Rn measurements were performed in 21 wells in and outside the source zone during 15 months. In uncontaminated groundwater, the radon activity was relatively constant and remained always >11 Bq/L. The variability of radon activity measurements in wells affected by the pump‐and‐skim system was consistent with the measurements in wells that were not impacted by the system. The mean activities in wells in the source zone were, in general, significantly lower than in wells upgradient of the source zone, owing to partitioning of 222Rn into the oil phase. The lowest activities were found in zones with high non‐aqueous phase liquid (NAPL) recovery. LNAPL saturations around each recovery well were furthermore calculated during a period of high groundwater level, using a laboratory‐determined crude oil–water partitioning coefficient of 38.5 ± 2.9. This yielded an estimated volume of residual crude oil of 309 ± 93 m3 below the capillary fringe. We find that 222Rn is a useful and cheap groundwater tracer for finding zones of good LNAPL recovery in an aquifer treated by dual‐phase LNAPL removal, but that quantification of NAPL saturation using Rn is highly uncertain. 相似文献
28.
29.
Fabio?OrianiEmail authorView authors OrcID profile Raj?Mehrotra Grégoire?Mariethoz Julien?Straubhaar Ashish?Sharma Philippe?Renard 《Stochastic Environmental Research and Risk Assessment (SERRA)》2018,32(2):321-340
Daily rainfall is a complex signal exhibiting alternation of dry and wet states, seasonal fluctuations and an irregular behavior at multiple scales that cannot be preserved by stationary stochastic simulation models. In this paper, we try to investigate some of the strategies devoted to preserve these features by comparing two recent algorithms for stochastic rainfall simulation: the first one is the modified Markov model, belonging to the family of Markov-chain based techniques, which introduces non-stationarity in the chain parameters to preserve the long-term behavior of rainfall. The second technique is direct sampling, based on multiple-point statistics, which aims at simulating a complex statistical structure by reproducing the same data patterns found in a training data set. The two techniques are compared by first simulating a synthetic daily rainfall time-series showing a highly irregular alternation of two regimes and then a real rainfall data set. This comparison allows analyzing the efficiency of different elements characterizing the two techniques, such as the application of a variable time dependence, the adaptive kernel smoothing or the use of low-frequency rainfall covariates. The results suggest, under different data availability scenarios, which of these elements are more appropriate to represent the rainfall amount probability distribution at different scales, the annual seasonality, the dry-wet temporal pattern, and the persistence of the rainfall events. 相似文献
30.