首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   238篇
  免费   23篇
  国内免费   3篇
测绘学   5篇
大气科学   23篇
地球物理   55篇
地质学   66篇
海洋学   14篇
天文学   65篇
自然地理   36篇
  2024年   3篇
  2023年   3篇
  2022年   1篇
  2021年   9篇
  2020年   10篇
  2019年   12篇
  2018年   6篇
  2017年   18篇
  2016年   19篇
  2015年   9篇
  2014年   23篇
  2013年   31篇
  2012年   17篇
  2011年   18篇
  2010年   14篇
  2009年   21篇
  2008年   13篇
  2007年   4篇
  2006年   5篇
  2005年   5篇
  2004年   4篇
  2003年   5篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1996年   1篇
  1985年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有264条查询结果,搜索用时 15 毫秒
181.
Bat guano cores have been used as a source of palaeoenvironmental information to aid in the reconstruction of past climates and vegetation. We collected a 104‐cm‐long (43 cm compacted) guano core from Fern Cave, Alabama, USA, that provided a c. 6000‐year record of guano accumulation. Pollen, nutrients (C, N, P) and stable isotopes (δ13C, δ15N) were measured on the guano core with the objective of reconstructing the environmental history of the area from the mid‐Holocene to present. Our data indicate that bats have utilized Fern Cave for at least 6000 years and that Woodland Indians also utilized the cave for a short period. A 3‐cm charcoal layer was dated to 2720±30 cal. a BP and inferred to be Woodland Indian in origin from microscopic inspection and thickness. Pollen and geochemical data showed that bat diets changed in the late Holocene possibly linked to food supply and climate changes. These results demonstrate that guano cores are a useful tool of palaeoenvironmental reconstruction when other forms of palaeorecords do not exist and can add to local archaeological information.  相似文献   
182.
Structural settings and lithological characteristics are traditionally assumed to influence the development of erosional landforms, such as gully networks and rock couloirs, in steep mountain rock basins. The structural control of erosion of two small alpine catchments of distinctive rock types is evaluated by comparing the correspondences between the orientations of their gullies and rock couloirs with (1) the sliding orientations of potential slope failures mechanisms, and (2) the orientation of the maximum joint frequency, this latter being considered as the direction exploited primarily by erosion and mass wasting processes. These characteristic orientations can be interpreted as structural weaknesses contributing to the initiation and propagation of erosion. The morphostructural analysis was performed using digital elevation models and field observations. The catchment comprised of magmatic intrusive rocks shows a clear structural control, mostly expressed through potential wedges failure. Such joint configurations have a particular geometry that encourages the development of gullies in hard rock, e.g. through enhanced gravitational and hydrological erosional processes. In the catchment underlain by sedimentary rocks, penetrative joints that act as structural weaknesses seem to be exploited by gullies and rock couloirs. However, the lithological setting and bedding configuration prominently control the development of erosional landforms, and influence not only the local pattern of geomorphic features, but the general morphology of the catchment. The orientations of the maximum joint frequency are clearly associated with the gully network, suggesting that its development is governed by anisotropy in rock strength. These two catchments are typical of bedrock‐dominated basins prone to intense processes of debris supply. This study suggests a quantitative approach for describing the relationship between bedrock jointing and geomorphic features geometry. Incorporation of bedrock structure can be relevant when studying processes governing the transfer of clastic material, for the assessment of sediment yields and in landforms evolution models. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
183.
We assessed short-term ecological and potential human health effects of wastewater treatment plant (WTP) effluent by measuring δ15N‰ and microbial concentrations in oysters and suspended particulate matter (SPM). We also tested male-specific bacteriophage (MSB) as an alternative to fecal coliforms, to assess potential influence of wastewater contamination on shellfish. WTP effluent did not affect oyster growth or survival, but SPM and oysters acquired wastewater-specific δ15N‰. δ15N values were depleted near the WTP, typical of low-level processed wastewater. Fecal coliform and MSB concentrations were higher in samples taken closest to the WTP, and MSB values were significantly correlated with δ15N‰ in oyster tissues. Overall, oysters demonstrated relatively rapid integration and accumulation of wastewater-specific δ15N‰ and indicator microorganisms compared to water samples. These data suggest oysters were superior sentinels compared to water, and MSB was a more reliable indicator of wastewater influence on shellfish than fecal coliforms.  相似文献   
184.
This study explores the feasibility of an entirely satellite remote sensing (RS)‐based hydrologic budget model for a ground data‐constrained basin, the Rufiji basin in Tanzania, from the balance of runoff (Q), precipitation (P), storage change (ΔS), and evapotranspiration (ET). P was determined from the Tropical Rainfall Measuring Mission, ΔS from the Gravity Recovery and Climate Experiment, and ET from the Moderate Resolution Imaging Spectroradiometer, the surface radiation budget, and the Atmosphere Infrared Radiation Sounder. Q was estimated as a residual of the water balance and tested against measured Q for a sub‐basin of the Rufiji (the Usangu basin) where ground measurements were available (R2 = 0.58, slope = 1.9, root mean square error = 29 mm/month, bias = 14%). We also tested a geographical information system (GIS)‐driven (ArcCN‐runoff) runoff model (R2 = 0.64, slope = 0.43, root mean square error = 39 mm/month). We conducted an error propagation analysis from each of the model's hydrologic components (P, ET, and ΔS). We find that the RS‐based model amplitude is most sensitive to ET and slightly less so to P, whereas the model's seasonal trends are most sensitive to ?S. Although RS–GIS‐driven models are becoming increasingly used, our results indicate that long‐term water resource assessment policy and management may be more appropriate than ‘instantaneous’ or short‐term water resource assessment. However, our analyses help develop a series of tools and techniques to progress our understanding of RS–GIS in water resource management of data‐constrained basins at the level of a water resource manager. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
185.
The association between hydrocarbon‐rich reservoirs and organic‐rich source rocks means unconventional oil and gas plays usually occur in mature sedimentary basins—where large‐scale conventional development has already taken place. Abandoned wells in proximity to hydraulic fracturing could be affected by increased fluid pressures and corresponding newly generated fractures that directly connect (frac hit) to an abandoned well or to existing fractures intersecting an abandoned well. If contaminants migrate to a pathway hydraulically connected to an abandoned well, upward leakage may occur. Potential effects of hydraulic fracturing on upward flow through a particular type of leaky abandoned well—abandoned oil and gas wells converted into water wells were investigated using numerical modeling. Several factors that affect flow to leaky wells were considered including proximity of a leaky well to hydraulic fracturing, flowback, production, and leaky well abandonment methods. The numerical model used historical records and available industry data for the Eagle Ford Shale play in south Texas. Numerical simulations indicate that upward contaminant migration could occur through leaky converted wells if certain spatial and hydraulic conditions exist. Upward flow through leaky converted wells increased with proximity to hydraulic fracturing, but decreased when flowback and production occurred. Volumetric flow rates ranged between 0 and 0.086 m3/d for hydraulic‐fracturing scenarios. Potential groundwater impacts should be paired with plausible transport mechanisms, and upward flow through leaky abandoned wells could be unrelated to hydraulic fracturing. The results also underscore the need to evaluate historical activities.  相似文献   
186.
Although hillslope evolution has been subject to much investigation for more than a century, the effect of climate on the morphology of soil‐mantled hillslopes remains poorly constrained. In this study, we perform numerical simulations of volcanic cinder cones in the Golan Heights (eastern Mediterranean) to estimate soil transport efficiency across a significant north–south gradient in mean annual precipitation (1100 to 500 mm). We use the initial cinder cone morphology (constrained by stratigraphy), the modern hillslope form (surveyed with sub‐meter accuracy) and the eruption age (based on 40Ar–39Ar chronology) to predict the best‐fit value of the soil transport coefficient (‘diffusivity’) based on a nonlinear transport model. Our results indicate that the best‐fit diffusivity (K ) varies from 1 to 6 m2 ka?1 among the five cinder cones in our field area. Diffusivity (K ) values vary systematically with precipitation and hillslope aspect; specifically, K is higher on south‐facing (drier) hillslopes and decreases with mean annual precipitation. We interpret this climate dependency to reflect vegetation‐driven variations in apparent soil cohesion, which increases with root network density, and attenuation of rain splash and overland flow erosion, which increases with vegetative ground cover. To assess how vegetative root mass and ground cover vary with precipitation and aspect, we quantified the spatial distribution of NDVI (normalized difference vegetation index) from ASTER satellite images and observed spatial variations that correlate with our calibrated values of K . Analysis of previously studied cinder cones in the USA can be used to extend our framework to arid domains. This endeavor suggests a humped relationship between K and precipitation with maximum diffusivity at mean annual precipitation of 400–600 mm. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
187.
Radar structures of one mesocyclone and one mesocirculation (the term mesocirculation refers to a class of rotating updrafts, which may or may not be as spatially and temporally large as a typical mesocyclone) that developed a total of four tornadoes in association with Tropical Cyclone (TC) Frances 1998 are presented. One tornado developed within an inner rainband near the time of landfall while three of the other tornadoes developed within an outer rainband nearly 24 hours after the landfall. Radar reflectivities of the tornadic circulations averaged upwards of 40 dBZ while Doppler radar wind components directed toward the radar averaged 11 m s−1. It is realized that although TC Frances was a minimal hurricane it spawned several tornadoes (four of which were studied) causing damage exceeding $2 million. These tornadoes were not all located close to the TC center, serving as a caution to forecasters and emergency personnel that the immediate landfalling area is not the only place to watch.While it is difficult to accurately predict the TC tornado location and time of occurrence, the degree of low-level baroclinicity seems to play an important role in tornadogenesis. Another significant finding is that the tornadoes were produced on the inward side of an inner rainband, as well as the inward side of an outer rainband. Consistent with climatology, the forward right quadrant of the TC developed the four tornadoes studied here.The lead author, Professor G. V. Rao died 31 July 2004 at the age of 70. He fell victime to the waves while swimming in Mazatlan, Mexico. This is the last paper he publilshed as lead author.  相似文献   
188.
A unique multispectral imager and an associated multispectral analysis framework are described which together constitute a new diagnostic tool for auroral research. By acquiring spatial and spectral data simultaneously, multispectral imaging allows one to exploit physical connections between auroral morphology and the auroral optical spectrum in a way that sequential spectral imaging cannot. The initial research focus is on imaging the transition in the incident energy spectrum during the formation of discrete arcs—that is, when the precipitating population is characterized by <1 keV electrons. A technique is presented which uses two spectral bands (centered at 4278 and 7325 Å) to extend the effective dynamic range of passive imaging to much lower energies.  相似文献   
189.
A controlled field pilot has been developed in Bozeman, Montana, USA, to study near surface CO2 transport and detection technologies. A slotted horizontal well divided into six zones was installed in the shallow subsurface. The scale and CO2 release rates were chosen to be relevant to developing monitoring strategies for geological carbon storage. The field site was characterized before injection, and CO2 transport and concentrations in saturated soil and the vadose zone were modeled. Controlled releases of CO2 from the horizontal well were performed in the summers of 2007 and 2008, and collaborators from six national labs, three universities, and the U.S. Geological Survey investigated movement of CO2 through the soil, water, plants, and air with a wide range of near surface detection techniques. An overview of these results will be presented.  相似文献   
190.
Multiphysics hillslope processes triggering landslides   总被引:1,自引:3,他引:1  
In 1996, a portion of a highly instrumented experimental catchment in the Oregon coast range failed as a large debris flow from heavy rain. For the first time, we quantify the 3-D multiphysical aspects that triggered this event, including the coupled sediment deformation-fluid flow processes responsible for mobilizing the slope failure. Our analysis is based on a hydromechanical continuum model that accounts for the loss of sediment strength due to increased saturation as well as the frictional drag exerted by the moving fluid. Our studies highlight the dominant role that bedrock topography and rainfall history played in defining the failure mechanism, as indicated by the location of the scarp zone that was accurately predicted by our 3-D continuum model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号