首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   30篇
  国内免费   3篇
测绘学   5篇
大气科学   23篇
地球物理   53篇
地质学   66篇
海洋学   14篇
天文学   65篇
自然地理   36篇
  2024年   2篇
  2023年   3篇
  2022年   1篇
  2021年   8篇
  2020年   10篇
  2019年   12篇
  2018年   6篇
  2017年   18篇
  2016年   19篇
  2015年   9篇
  2014年   23篇
  2013年   31篇
  2012年   17篇
  2011年   18篇
  2010年   14篇
  2009年   21篇
  2008年   13篇
  2007年   4篇
  2006年   5篇
  2005年   5篇
  2004年   4篇
  2003年   5篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1996年   1篇
  1985年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有262条查询结果,搜索用时 15 毫秒
111.
This special feature: Genetic Structure and Adaptation in Coastal Ecosystems emphasizes the importance of research focused on population genetic structure and evolutionary change for understanding estuarine and coastal communities. Many studies have examined the effect of environmental gradients on community-level patterns in estuarine habitats; however, relatively little is known about the role of genetically based adaptation (the heritable response to these environmental gradients) in these organisms. This special feature presents 11 studies that use a variety of approaches including ecophysiology, ecological genetics, molecular markers, and patterns of gene expression occurring within these populations. These studies provide examples of the role of genetic diversity and adaptation across a diversity of estuarine and coastal environments, and highlight the temporal and spatial scales at which adaptation impinges upon management. This collection of papers is especially timely, given the increasing importance of understanding and predicting the response to global climate change in order to effectively manage these communities.  相似文献   
112.
A detailed petrologic survey has been made of 17 basaltic chips (sized between 1 and 10 mm) from the 12003 soil sample as part of an ongoing study of basaltic diversity at the Apollo 12 landing site. An attempt has been made to classify these samples according to the well‐established grouping of olivine, pigeonite, ilmenite, and feldspathic basalts. Particular attention has been paid to variations in major, minor, and trace element mineral chemistry (determined by electron microprobe analysis and laser ablation ICP‐MS), which may be indicative of particular basaltic suites and less susceptible to sampling bias than bulk sample characteristics. Examples of all three main (olivine, pigeonite, and ilmenite) basaltic suites have been identified within the 12003 soil. One sample is identified as a possible new addition to the feldspathic suite, which currently consists of only one other confirmed sample. Identification of additional feldspathic basalts strengthens the argument that they represent a poorly sampled basaltic flow local to the Apollo 12 site, rather than exotic material introduced to the site by impact mixing processes. Three samples are identified as representing members of one or two previously unrecognized basaltic suites.  相似文献   
113.
We present a new variable-step Gauss–Legendre implicit-Runge–Kutta-based approach for orbit and uncertainty propagation, VGL-IRK, which includes adaptive step-size error control and which collectively, rather than individually, propagates nearby sigma points or states. The performance of VGL-IRK is compared to a professional (variable-step) implementation of Dormand–Prince 8(7) (DP8) and to a fixed-step, optimally-tuned, implementation of modified Chebyshev–Picard iteration (MCPI). Both nearly-circular and highly-elliptic orbits are considered using high-fidelity gravity models and realistic integration tolerances. VGL-IRK is shown to be up to eleven times faster than DP8 and up to 45 times faster than MCPI (for the same accuracy), in a serial computing environment. Parallelization of VGL-IRK and MCPI is also discussed.  相似文献   
114.
We present spectra of Saturn's icy satellites Mimas, Enceladus, Tethys, Dione, Rhea, and Hyperion, 1.0-2.5 μm, with data extending to shorter (Mimas and Enceladus) and longer (Rhea and Dione) wavelengths for certain objects. The spectral resolution (R=λλ) of the data shown here is in the range 800-1000, depending on the specific instrument and configuration used; this is higher than the resolution (R=225 at 3 μm) afforded by the Visual-Infrared Mapping Spectrometer on the Cassini spacecraft. All of the spectra are dominated by water ice absorption bands and no other features are clearly identified. Spectra of all of these satellites show the characteristic signature of hexagonal H2O ice at 1.65 μm. We model the leading hemisphere of Rhea in the wavelength range 0.3-3.6 μm with the Hapke and the Shkuratov radiative transfer codes and discuss the relative merits of the two approaches to fitting the spectrum. In calculations with both codes, the only components used are H2O ice, which is the dominant constituent, and a small amount of tholin (Ice Tholin II). Tholin in small quantities (few percent, depending on the mixing mechanism) appears to be an essential component to give the basic red color of the satellite in the region 0.3-1.0 μm. The quantity and mode of mixing of tholin that can produce the intense coloration of Rhea and other icy satellites has bearing on its likely presence in many other icy bodies of the outer Solar System, both of high and low geometric albedos. Using the modeling codes, we also establish detection limits for the ices of CO2 (a few weight percent, depending on particle size and mixing), CH4 (same), and NH4OH (0.5 weight percent) in our globally averaged spectra of Rhea's leading hemisphere. New laboratory spectral data for NH4OH are presented for the purpose of detection on icy bodies. These limits for CO2, CH4, and NH4OH on Rhea are also applicable to the other icy satellites for which spectra are presented here. The reflectance spectrum of Hyperion shows evidence for a broad, unidentified absorption band centered at 1.75 μm.  相似文献   
115.
Knickpoints in bedrock streams are often interpreted as transient features generated by a change in boundary conditions. It is typically assumed that knickpoints propagate upstream with constant vertical velocities, though this relies on a stream being in erosional steady state (erosion rate equals rock uplift rate) prior to the knickpoint's formation. Recent modeling and field studies suggest that along-stream contrasts in rock erodibility perturb streams from erosional steady state. To evaluate how contrasts in rock erodibility might impact knickpoint interpretations, we test parameter space (rock erodibility, rock contact dip angle, change in rock uplift rate) in a one-dimensional (1D) bedrock stream model that has variable rock erodibility and produces a knickpoint with a sudden change in rock uplift rate. Upstream of a rock contact, the vertical velocity of a knickpoint generated by a change in rock uplift rate is strongly correlated with how the rock contact has previously perturbed erosion rates. These knickpoints increase vertical velocity upon propagating upstream of a hard over soft contact and decrease vertical velocity upon propagating upstream of a soft over hard contact. However, interactions with other transient perturbations produced by rock contacts make for nuances in knickpoint behavior. Rock contacts also influence the geometry of knickpoints, which can become particularly difficult to identify upstream of soft over hard rock contacts. Using our simulations, we demonstrate how a contact's along-stream horizontal migration rate and cross-contact change in rock strength control how much an upstream reach is perturbed from erosional steady state. When simulations include multiple contacts, the knickpoint is particularly prone to colliding with other transient perturbations and can even disappear altogether if rock contact dips are sufficiently shallow. Caution should be taken when analyzing stream profiles in areas with significant changes in rock strength, especially when rock contact dip angles are near the stream's slope.  相似文献   
116.
Surface soils from the Chengdu Economic Region (CER) were analyzed for sixteen United States Environment Protection Agency priority polycyclic aromatic hydrocarbons (PAHs) to study the spatial distribution and to identify the sources of PAHs. Relatively high concentrations (more than 1500 ngg− 1) of high molecular weight PAHs were found in Chengdu Plain, in the middle of CER, while high concentrations (more than 500 ng g− 1) of low molecular weight PAHs were detected in the surrounding mountains. The concentrations of ∑16-PAHs in topsoil samples from CER (12.52–75,431.47 ngg− 1, average value was 3233.92 ngg− 1) were higher than that from the southern China (21.91–3077 ngg− 1, average value was less than 500 ngg− 1), and they were comparable to concentrations in soils from the northern China (366–254,080 ngg− 1, mean value was more than 3000 ngg− 1). The concentrations from CER were also much higher than the concentrations of some world clean regions such as Antarctic (34.9–171 ngg− 1), European high mountains (9–11,000 ngg− 1, mean value was 158 ngg− 1) and some Europe residential (736 ngg− 1) and arable soils (60–145 ngg− 1, mean value was 66 ngg− 1). The ratio of tracer compounds (BaA/(BaA + Chr), Flo/(Flo + Pyr), and IcdP/(IcdP + BghiP)) indicated that the high concentrations of PAHs in soils were mainly derived from fossil fuels combustion in mountain region and from the incomplete combustion of petroleum in developed plain area (such as Chengdu and Deyang). From the above distribution characteristics and ratios of tracer compounds, we inferred the reasons for the distribution pattern of PAHs in CER were the domestic heating, emissions, and the physicochemical properties of PAHs.  相似文献   
117.
Rapidly eroding, coastal mountain belts, where steep rivers and submarine channels connect upland sources to nearby marine sinks are hotspots of organic carbon transfer from life biomass, soil and exhumed bedrock into geological storage. Using observations from the Southern Alps of New Zealand, and Taiwan, we have mapped this organic pathway to geological carbon sequestration, and can evaluate the magnitude and efficiency of transfers between sources and sinks. We demonstrate that POC is harvested by landsliding, but importantly also by common and widespread surface runoff on steep hillslopes. Although terrestrially sourced POC is found in many sedimentary environments associated with mountain belts and frontier basins, it appears to be most abundantly trapped and preserved in marine turbidites. The loss of all forms of POC in onward transport through short, steep routing systems to this repository is limited. This is in marked contrast to larger routing systems, in which only the most resilient forms of POC survive into long-term deposition.  相似文献   
118.
At ambient conditions, witherite is the stable form of BaCO3 and has the aragonite structure with space group Pmcn. Above ~10 GPa, BaCO3 adopts a post-aragonite structure with space group Pmmn. High-pressure and high-temperature synchrotron X-ray diffraction experiments were used to study the stability and equation of state of post-aragonite BaCO3, which remained stable to the highest experimental PT conditions of 150 GPa and 2,000 K. We obtained a bulk modulus K 0 = 88(2) GPa with $K'$  = 4.8(3) and V 0 = 128.1(5) Å3 using a third-order Birch-Murnaghan fit to the 300 K experimental data. We also carried out density functional theory (DFT) calculations of enthalpy (H) of two structures of BaCO3 relative to the enthalpy of the post-aragonite phase. In agreement with previous studies and the current experiments, the calculations show aragonite to post-aragonite phase transitions at ~8 GPa. We also tested a potential high-pressure post–post-aragonite structure (space group C222 1 ) featuring four-fold coordination of oxygen around carbon. In agreement with previous DFT studies, ΔH between the C222 1 structure and post-aragonite (Pmmn) decreases with pressure, but the Pmmn structure remains energetically favorable to pressures greater than 200 GPa. We conclude that post–post-aragonite phase transformations of carbonates do not follow systematic trends observed for post-aragonite transitions governed solely by the ionic radii of their metal cations.  相似文献   
119.
After a pelagic larval phase, infaunal bivalves undergo metamorphosis and transition to the underlying sediments to begin the benthic stage of their life history, where they explore and then either accept or reject sediments. Although the settlement cues used by juvenile infaunal bivalves are poorly understood, here we provide evidence that carbonate saturation state is a significant chemical cue in both direct observation laboratory studies and field manipulations. In the laboratory, plantigrade-stage Mercenaria mercenaria (200 μm shell height) showed a significant positive relationship between percent burrowed and Ωaragonite, with an increasing probability of settlement with increasing saturation state. In the field, we increased bivalve recruitment by a factor of three in a 30-day field study by raising the pH (~0.3) and saturation state of surface sediments by buffering sediments with crushed shell (CaCO3). The susceptibility of infaunal bivalves to dissolution mortality and the tight coupling of other sedimentary biogeochemical processes with carbonate dynamics suggest that mineral thermodynamics may be an overarching cue new settlers are responding to.  相似文献   
120.
We investigated the petrologic, geochemical, and spectral parameters that relate to the type and degree of aqueous alteration in nine CM chondrites and one CI (Ivuna) carbonaceous chondrite. Our underlying hypothesis is that the position and shape of the 3 μm band is diagnostic of phyllosilicate mineralogy. We measured reflectance spectra of the chondrites under dry conditions (elevated temperatures) and vacuum (10?8 to 10?7 torr) to minimize adsorbed water and mimic the space environment, for subsequent comparison with reflectance spectra of asteroids. We have identified three spectral CM groups in addition to Ivuna. “Group 1,” the least altered group as determined from various alteration indices, is characterized by 3 μm band centers at longer wavelengths, and is consistent with cronstedtite (Fe‐serpentine). “Group 3,” the most altered group, is characterized by 3 μm band centers at shorter wavelengths and is consistent with antigorite (serpentine). “Group 2” is an intermediate group between group 1 and 3. Ivuna exhibits a unique spectrum that is distinct from the CM meteorites and is consistent with lizardite and chrysotile (serpentine). The petrologic and geochemical parameters, which were determined using electron microprobe analyses and microscopic observations, are found to be consistent with the three spectral groups. These results indicate that the distinct parent body aqueous alteration environments experienced by these carbonaceous chondrites can be distinguished using reflectance spectroscopy. High‐quality ground‐based telescopic observations of Main Belt asteroids can be expected to reveal not just whether an asteroid is hydrated, but also details of the alteration state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号