首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   713篇
  免费   37篇
  国内免费   4篇
测绘学   23篇
大气科学   57篇
地球物理   160篇
地质学   255篇
海洋学   78篇
天文学   108篇
综合类   5篇
自然地理   68篇
  2024年   2篇
  2022年   4篇
  2021年   7篇
  2020年   8篇
  2019年   10篇
  2018年   22篇
  2017年   18篇
  2016年   25篇
  2015年   17篇
  2014年   26篇
  2013年   44篇
  2012年   36篇
  2011年   37篇
  2010年   32篇
  2009年   44篇
  2008年   47篇
  2007年   46篇
  2006年   39篇
  2005年   26篇
  2004年   27篇
  2003年   30篇
  2002年   24篇
  2001年   19篇
  2000年   17篇
  1999年   11篇
  1998年   11篇
  1997年   5篇
  1996年   8篇
  1995年   8篇
  1994年   8篇
  1993年   10篇
  1992年   5篇
  1990年   7篇
  1989年   2篇
  1988年   5篇
  1987年   2篇
  1986年   3篇
  1985年   8篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   7篇
  1980年   8篇
  1979年   3篇
  1978年   3篇
  1975年   5篇
  1974年   4篇
  1973年   5篇
  1971年   5篇
  1969年   1篇
排序方式: 共有754条查询结果,搜索用时 0 毫秒
111.
112.
Recharge estimation for transient ground water modeling   总被引:11,自引:0,他引:11  
Reliable ground water models require both an accurate physical representation of the system and appropriate boundary conditions. While physical attributes are generally considered static, boundary conditions, such as ground water recharge rates, can be highly variable in both space and time. A practical methodology incorporating the hydrologic model HELP3 in conjunction with a geographic information system was developed to generate a physically based and highly detailed recharge boundary condition for ground water modeling. The approach uses daily precipitation and temperature records in addition to land use/land cover and soils data. The importance of the method in transient ground water modeling is demonstrated by applying it to a MODFLOW modeling study in New Jersey. In addition to improved model calibration, the results from the study clearly indicate the importance of using a physically based and highly detailed recharge boundary condition in ground water quality modeling, where the detailed knowledge of the evolution of the ground water flowpaths is imperative. The simulated water table is within 0.5 m of the observed values using the method, while the water levels can differ by as much as 2 m using uniform recharge conditions. The results also show that the combination of temperature and precipitation plays an important role in the amount and timing of recharge in cooler climates. A sensitivity analysis further reveals that increasing the leaf area index, the evaporative zone depth, or the curve number in the model will result in decreased recharge rates over time, with the curve number having the greatest impact.  相似文献   
113.
114.
115.
Analysis of the chlorine, fluorine and water content of approximately 200 samples from a total of fourteen mineralized and ten barren intrusive rocks from the Caribbean and Central America indicates that abundances of these constituents fail to distinguish mineralized rocks from barren rocks. Variations in background abundances arise from the increase in halogen content of potassium-rich rocks and from the depletion of halogens in altered and porphyritic rocks. A particularly well developed potassium-fluorine covariance is observed in tin-bearing granites, but such a covariance cannot be used to distinguish intrusive rocks associated with porphyry copper mineralization.  相似文献   
116.
A peat bed found under solifluction deposits on Godøya island, western Norway, accumulated during a few decades around 11 000 yr BP, at the end of the Allerød period of the Late Weichselian. Palaeoecological investigations showed a local vegetation succession on wet sand culminating in a mire community dominated by Carex nigra. Periodic flooding brought in sand and silt, which decreased as drainage was impeded sufficiently for standing water to develop. The surrounding terrestrial vegetation was dominated by Salix scrub, with some open heath and alpine habitats nearby. Apart from two aquatic species, the 29 insect taxa recorded are characteristic of alpine heaths, plant litter (under Salix scrub) and stream-sides. Their remains, together with the terrestrial plant macrofossils, were washed into the mire from nearby. Because the fossils are locally derived, the environmental reconstructions are of the actual conditions at Godøy at ca. 11 000 yr BP. Palaeotemperature estimates from beetles and plants are in agreement. The coleopteran estimates (Mutual Climatic Range Method) suggest mean July temperatures of 10–13°C, slightly cooler than today (13.5°), and January temperatures between +1 and ?10°C, similar to or much colder than today. Summer temperature estimates from individual plant taxa indicate that temperatures during the Allerød period were similar to today's, but estimates from the reconstructed vegetation and timber-line positions give estimates up to 3.5° cooler. Temperatures fell 2.5–7.5°C at the Younger Dryas. This abrupt and severe cooling initiated the solifluction processes on Godøya that buried the peat. The Godøy peat bed and its contained fossils provide a rare glimpse of Allerød biota and environments at the local (site) scale.  相似文献   
117.
The concept of the Borehole Diffusive Flux Apparatus (BDFA) is presented herein. The BDFA is an innovative apparatus designed to provide continuous direct access to an undisturbed column of sediment that can be monitored at multiple discrete vertical intervals to provide high-resolution characterization of local-scale mass transfer and attenuation. The conceptual basis and technical design of the device are presented, along with an example of borehole design and installation at a field site. Mathematical simulations are used to illustrate its application for two scenarios. The results of these simulations indicate that test periods of several weeks to a few months should be sufficient to obtain robust results. The device has the potential to improve our ability to characterize critical mass-transfer and attenuation processes and to quantify the associated rates. This information is key to the evaluation of remediation alternatives, for enhancing the accuracy of mathematical models, and to support more effective long-term management of large groundwater contaminant plumes present at many sites.  相似文献   
118.
As many as 2500 interdune lakes lie within the Nebraska Sand Hills, a 50000 km stabilized sand sea. The few published data on cores from these lakes indicate they are typically underlain by less than two m of Holocene lacustrine sediments. However, three lakes in the southwestern Sand Hills, Swan, Blue, and Crescent, contain anomalously thick marsh (peat) and lacustrine (gyttja) sediments. Swan Lake basin contains as much as 8 m of peat, which was deposited between about 9000 and 3300 years ago. This peat is conformably overlain by as much as 10.5 m of gyttja. The sediment record in Blue lake, which is 3 km downgradient from Swan lake, dates back to only about 6000 years ago. Less than two m of peat, which was deposited from 6000 to 5000 years ago, is overlain by 12 m of gyttja deposited in the last 4300 years. Crescent Lake basin, one km downgradient from Blue Lake, has a similar sediment history except for a lack of known peat deposits. Recently, a 8-km long segment of a paleovalley was documented running beneath the three lakes and connecting to the head of Blue Creek Valley. Blockage of this paleovalley by dune sand during two arid intervals, one shortly before 10500 yr BP and one in the mid-Holocene, has resulted in a 25 m rise in the regional water table. This made possible the deposition of organic-rich sediment in all three lakes. Although these lakes, especially Swan, would seem ideal places to look for a nearly complete record of Holocene climatic fluctuations, the paleoclimatic record is confounded by the effect dune dams have on the water table. In Swan Lake, the abrupt conversion from marsh to lacustrine deposition 3300 years ago does not simply record the change to a wetter regional climate; it reflects the complex local hydrologic changes surrounding the emplacement and sealing of dune dams, as well as regional climate.  相似文献   
119.
A limnogeological reconnaissance study was carried out on Lake Iznik, located in the southeast of the Marmara region of Turkey, involving a seismic survey and collection of short sediment cores. This lake is located on the middle branch of the North Anatolian Fault Zone (NAFZ), a transform plate boundary between the Eurasian and Anatolian Plates. It is, therefore, tectonically active and offers an opportunity to investigate the interplay of sedimentary and seismo-tectonic processes, as well as climate change and human impact in the region. Short cores of the three sub-basins, maximum length of 35.5 cm, recovered non-laminated, blackish clays and silts with varying amounts of biogenic and minerogenic (allochthonous, autochthonous) material, which documented almost the last 80 years of deposition and environmental history. High sedimentation rates in the deeper core sections are accompanied by changes in land use (conversion of woodland to farmland) in the northern areas of Lake Iznik, which caused the deposition of more weathered material (high K/Na ratios) and higher contents of Mn in the lake. A tendency towards eutrophic conditions within the last 20 years is indicated by high nutrient content (N, TOC, P), decreasing C/N-ratios, and characteristic diatom and cladoceran associations. Also increased pollution is revealed by higher Pb, Cu, and Zn contents and increased supply of human and animal faeces (high coprostanol content) during the last two decades. But simultaneous lower sedimentation rates towards the core tops complicate the reconstruction of recent and past eutrophication and pollution states of Lake Iznik. This requires an extension of the pilot study and deeper sediment cores, to recover non-anthropogenic influenced sediment levels.  相似文献   
120.
This article provides an analysis of a wetland site in southern Illinois from presettlement to the present. The study area is part of the Cache River‐Cypress Creek Wetland, which has international importance, as recognized by the Ramsar Convention on Wetlands. Land‐cover data for 1807, 1938, and 1993 were created and analyzed with a geographic information system (GIS). Land‐use change by topographic setting (uplands, transitional, and bottomlands) and soil productivity was quantified and studied. Interviews with local experts informed this analysis. Results illustrate the complexity of environmental change and its driving forces. First, notable forest and swamp acreage was converted to cropland between 1807 and 1938 and, to a lesser degree, from 1938 to 1993. Second, there were land‐use variations by topographic region. Between 1807 and 1938, the largest transformation occurred in the uplands, with substantial acreage converted from forest to cropland. Between 1938 and 1993, however, agriculture decreased in the upland areas as hilly areas reverted to forest cover. At the same time, agriculture expanded in the bottomlands as this land was drained for farming. Third, there are interesting patterns within these categories of land‐use change, as soil productivity is an indicator of what lands were taken out of cropland and converted back to grassland and forest.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号