首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1169篇
  免费   41篇
  国内免费   19篇
测绘学   20篇
大气科学   102篇
地球物理   293篇
地质学   383篇
海洋学   126篇
天文学   184篇
综合类   7篇
自然地理   114篇
  2021年   14篇
  2020年   13篇
  2019年   21篇
  2018年   28篇
  2017年   20篇
  2016年   29篇
  2015年   26篇
  2014年   38篇
  2013年   59篇
  2012年   42篇
  2011年   38篇
  2010年   40篇
  2009年   56篇
  2008年   51篇
  2007年   39篇
  2006年   43篇
  2005年   36篇
  2004年   24篇
  2003年   41篇
  2002年   24篇
  2001年   32篇
  2000年   28篇
  1999年   20篇
  1998年   20篇
  1997年   17篇
  1996年   9篇
  1995年   14篇
  1994年   17篇
  1993年   19篇
  1992年   8篇
  1991年   13篇
  1990年   19篇
  1989年   15篇
  1987年   12篇
  1986年   7篇
  1985年   20篇
  1984年   18篇
  1983年   19篇
  1982年   30篇
  1981年   24篇
  1980年   22篇
  1979年   20篇
  1978年   18篇
  1977年   21篇
  1976年   18篇
  1975年   13篇
  1974年   16篇
  1973年   18篇
  1972年   6篇
  1971年   8篇
排序方式: 共有1229条查询结果,搜索用时 17 毫秒
161.
Groundwater elevation fluctuation has been recognized as one mechanism causing temporal indoor air volatile organic chemical (VOC) impacts in vapor intrusion risk assessment guidance. For dissolved VOC sources, groundwater table fluctuation shortens/lengthens the transport pathway, and delivers dissolved contaminants to soils that are alternating between water saturated and variably saturated conditions, thereby enhancing volatilization potential. To date, this mechanism has not been assessed with field data, but enhanced VOC emission flux has been observed in lab-scale and modeling studies. This work evaluates the impact of groundwater elevation changes on VOC emission flux from a dissolved VOC plume into a house, supplemented with modeling results for cyclic groundwater elevation changes. Indoor air concentrations, air exchange rates, and depth to groundwater (DTW) were collected at the study house during an 86-d constant building underpressurization test. These data were used to calculate changes in trichloroethylene (TCE) emission flux to indoor air, during a period when DTW varied daily and seasonally from about 3.1 to 3.4 m below the building foundation (BF). Overall, TCE flux to indoor air varied by about 50% of the average, without any clear correlation to changes in DTW or its change rate. To complement the field study, TCE surface emission fluxes were simulated using a one-dimensional model (HYDRUS 1D) for conditions similar to the field site. Simulation results showed time-averaged surface TCE fluxes for cyclic water-table elevations were greater than for stationary water-table conditions at an equivalent time-averaged water-table position. The magnitudes of temporal TCE emission flux changes were generally less than 50% of the time-averaged flux, consistent with the field site observations. Simulation results also suggested that TCE emission flux changes due to groundwater fluctuation are likely to be significant at sites with shallow groundwater (e.g., < 0.5 m BF) and permeable soil types (e.g., sand).  相似文献   
162.
Water temperature (Tw) is a key determinant of freshwater ecosystem status and cause for concern under a changing climate. Hence, there is growing interest in the feasibility of moderating rising Tw through management of riparian shade. The Loughborough University Temperature Network (LUTEN) is an array of 36 water and air temperature (Ta) monitoring sites in the English Peak District set‐up to explore the predictability of local Tw, given Ta, river reach, and catchment properties. Year 1 of monitoring shows that 84%–94% of variance in daily Tw is explained by Ta. However, site‐specific logistic regression parameters exhibit marked variation and dependency on upstream riparian shade. Perennial spring flows in the lower River Dove also affect regression model parameters and strongly buffer daily and seasonal mean Tw. The asymptote of the models (i.e. maximum expected Tw) is particularly sensitive to groundwater inputs. We conclude that reaches with spring flows potentially offer important thermal refuges for aquatic organisms against expected long‐term warming of rivers and should be afforded special protection. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
163.
The Australian Institute of Marine Science (AIMS) conducted a pilot study around the Harriet A oil production platform on the Northwest Shelf of Australia. We evaluated hepatic ethoxyresorufin-O-deethylase (EROD) activity, fluorescent aromatic compounds (FACs) in bile and immunodetection of CYP1A-like proteins in two Australian tropical fish species, Gold-Spotted Trevally (Carangoides fulvoguttatus) and Bar-Cheeked Coral Trout (Plectropomus maculatus) to assess exposure to petroleum hydrocarbons associated with produced formation water (PFW). Additionally, the incidence of hydrocarbon-degrading bacteria isolated from the liver and bile of all fish captured was examined. Low EROD activity was found in both species, with EROD activity in C. fulvoguttatus showing significant site differences. FACs and CYP1A protein levels in C. fulvoguttatus showed a clear trend in hydrocarbon exposure consistent with hydrocarbon chemistry data: Harriet A>Harriet C>reference site. P. maculatus showed elevated levels of FACs at Harriet A as compared to the reference site and demonstrated detectable levels of CYP1A-like proteins at these two sites. Hydrocarbon-degrading bacteria were found in the liver and bile of both species, yet there was no correlation by sites. Our results demonstrate that C. fulvoguttatus and P. maculatus have potential as indicator species for assessing the effects from exposure to petroleum hydrocarbons. Both FACs and CYP1A are providing warning signs that there is potential for biological effects on fish populations exposed to PFW around the Harriet A production platform.  相似文献   
164.
The H. J. Andrews Experimental Forest (HJA) encompasses the 6400 ha Lookout Creek watershed in western Oregon, USA. Hydrologic, chemistry and precipitation data have been collected, curated, and archived for up to 70 years. The HJA was established in 1948 to study the effects of harvest of old-growth conifer forest and logging-road construction on water quality, quantity and vegetation succession. Over time, research questions have expanded to include terrestrial and aquatic species, communities and ecosystem dynamics. There are nine small experimental watersheds and 10 gaging stations in the HJA, including both reference and experimentally treated watersheds. Gaged watershed areas range from 8.5 to 6242 ha. All gaging stations record stage height, water conductivity, water temperature and above-stream air temperature. At nine of the gage sites, flow-proportional water samples are collected and composited over 3-week intervals for chemical analysis. Analysis of stream and precipitation chemistry began in 1968. Analytes include dissolved and particulate species of nitrogen and phosphorus, dissolved organic carbon, pH, specific conductance, suspended sediment, alkalinity, and major cations and anions. Supporting climate measurements began in the 1950s in association with the first small watershed experiments. Over time, and following the initiation of the Long Term Ecological Research (LTER) grant in 1980, infrastructure expanded to include a set of benchmark and secondary meteorological stations located in clearings spanning the elevation range within the Lookout Creek watershed, as well as a large number of forest understory temperature stations. Extensive metadata on sensor configurations, changes in methods over time, sensor accuracy and precision, and data quality control flags are associated with the HJA data.  相似文献   
165.
For health, economic, and aesthetic reasons, allowable concentrations (as suggested by the United States Environmental Protection Agency) of the secondary contaminants iron (Fe) and manganese (Mn) found present in drinking water are 0.3 and 0.05 mg/L, respectively. Water samples taken from private drinking wells in rural communities within Buncombe County, North Carolina contain concentrations of these metals that exceed secondary water quality criteria. This study predicted the spatial distribution of Fe and Mn in the county, and evaluated the effect of site environmental factors (bedrock geology, ground elevation, saprolite thickness, and drinking water well depth) in controlling the variability of Fe and Mn in groundwater. A statistically significant correlation between Fe and Mn concentrations, attributable to bedrock geology, was identified. Prediction models were created using ordinary kriging and cokriging interpolation techniques to estimate the presence of Fe and Mn in groundwater where direct measurements are not possible. This same procedure can be used to estimate the trend of other contaminants in the groundwater in different areas with similar hydrogeological settings.  相似文献   
166.
1,4‐Dioxane is a volatile organic compound that is fully miscible in water, allowing it to sequester in vadose zone pore water and serve as a long‐term source of groundwater contamination. Conventional soil vapor extraction (SVE) removes 1,4‐dioxane; however, substantial 1,4‐dioxane can remain even after other colocated chlorinated solvents have been remediated. A field demonstration of “enhanced SVE” (XSVE) with focused extraction and heated injection was conducted at former McClellan AFB, CA, achieving 94% reduction in soil concentrations. A screening‐level tool, HypeVent XSVE, was created to assist in system design and data reduction and to anticipate how operating factors affect XSVE performance (e.g., cleanup level, remediation time, etc.). It assumes well‐mixed conditions, and combines an energy balance, mass balances for water and contaminant, and a temperature‐dependent 1,4‐dioxane Henry's Law constant. User inputs include the target treatment zone size, initial 1,4‐dioxane and soil moisture concentrations, and ambient site and injection/extraction conditions (temperature, humidity). Projections based on inputs representative of demonstration site conditions adequately anticipated the observed macroscopic field results. Sensitivity analyses show that removal increases with increasing heated air injection temperature and relative humidity and decreasing initial soil moisture content.  相似文献   
167.
168.
Abstract

The hydrological cycle in arid and semi-arid climates is highly controlled by evaporation. The correct quantification of this process is essential for improving the accuracy of water balance estimates, especially in closed basins. The objective of this paper is to characterize evaporation rates from shallow groundwater using the chamber approach in six closed basins in the Altiplano of northern Chile. Measurements were made at 49 locations with water-table depths ranging from 0.09 m to 3.3 m. Estimated daily evaporation rates appeared to be strongly related to groundwater depth and soil texture. In particular, the highest rates were recorded in areas with high groundwater tables and coarse-grained soils. Evaporation curves were derived by fitting exponential and power relationships as functions of the groundwater depths that we proposed to use in the study area. An application of these curves for the Salar de Pedernales basin produced an estimated evaporation flow of 530 L s-1, using the average curve.

Citation Johnson, E., Yáñez, J., Ortiz, C. & Muñoz, J. (2010) Evaporation from shallow groundwater in closed basins in the Chilean Altiplano. Hydrol. Sci. J. 55(4), 624–635.  相似文献   
169.
Manganiferous rocks in the Mankwadzi area in the southernmost portion of the Kibi‐Winneba metavolcanic belt, one of several Mn occurrences in the Paleoproterozoic Birimian of Ghana, are hosted in hornblende schist and amphibolite. These rocks are, in places, intruded by hornblende dyke. In outcrop, the manganiferous rocks appear to be conformable with the host schist and amphibolite, are macroscopically dark, fine‐grained and structurally massive to distinctly banded. Observed alternating light and dark occasionally macro‐folded bands suggest post‐depositional deformation of both light and dark bands. Microscopic observations revealed that the light bands are dominantly Si‐rich and the dark bands mainly of opaque minerals. Whole rock analyses of the manganiferous rocks show high contents of MnO (16.75–27.4 wt%) suggesting that the opaque minerals are likely rich in Mn. The analyzed rock samples show moderate to strong enrichments in light rare earth elements compared to heavy rare earth elements. Whereas the manganiferous rocks show perceptibly negative Eu anomaly, host hornblende schist and hornblende dyke do not. Eu anomaly in amphibolite samples is, however, uncertain as the three samples analyzed gave positive, negative and no Eu anomalies. Based on the field characteristics, microscopic and geochemical features, we suggest that the Mn occurrence in the Mankwadzi area originated via sedimentary deposition and was later modified by metamorphism, hydrothermal and/or supergene processes similar to manganiferous occurrences at Nsuta and Tambao in the Birimian of West Africa.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号