首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8239篇
  免费   289篇
  国内免费   96篇
测绘学   199篇
大气科学   566篇
地球物理   1922篇
地质学   2972篇
海洋学   749篇
天文学   1209篇
综合类   19篇
自然地理   988篇
  2021年   89篇
  2020年   113篇
  2019年   114篇
  2018年   166篇
  2017年   162篇
  2016年   226篇
  2015年   194篇
  2014年   196篇
  2013年   469篇
  2012年   248篇
  2011年   307篇
  2010年   282篇
  2009年   338篇
  2008年   319篇
  2007年   279篇
  2006年   314篇
  2005年   237篇
  2004年   291篇
  2003年   262篇
  2002年   264篇
  2001年   173篇
  2000年   170篇
  1999年   141篇
  1998年   141篇
  1997年   103篇
  1996年   114篇
  1995年   114篇
  1994年   128篇
  1993年   113篇
  1992年   113篇
  1991年   109篇
  1990年   101篇
  1989年   85篇
  1988年   87篇
  1987年   122篇
  1986年   100篇
  1985年   163篇
  1984年   186篇
  1983年   144篇
  1982年   126篇
  1981年   131篇
  1980年   108篇
  1979年   124篇
  1978年   118篇
  1977年   103篇
  1976年   96篇
  1975年   91篇
  1974年   67篇
  1973年   83篇
  1972年   49篇
排序方式: 共有8624条查询结果,搜索用时 15 毫秒
111.
Legal factors play an underrated but significant role as constraints on conservation management. In this paper, based on observations in both Northern Ireland and the Republic of Ireland, mode of land tenure is assessed to determine its influence on the conservation management of coastal dunes. The tenure types considered are: private ownership, corporate private ownership, tenancy, secured tenancy, leasing, common (joint) ownership, uncertain ownership, public ownership and its subset military ownership. It is suggested that multiple private ownership is least likely to favour effective conservation management. Public ownership by a statutory conservation authority and corporate private ownership by a conservation-orientated NGO are regarded as the optimum tenure types for conservation management of coastal dunes.  相似文献   
112.
On any area of continental shelf the foraminiferal assemblage in the bottom sediment is likely to be composed of an indigenous benthic component and an allochthonous planktonic component sedimented from the water column above. Planktonic forminiferids are essentially oceanic and it seems clear that their presence in shelf sediments is often due to transport from an oceanic source. Evidence from the Celtic Sea, northwestern Gulf of Mexico, Persian Gulf and Andaman Sea shows that with passage away from the ocean there is a reduction in the planktonic—benthic ratio in the bottom sediment, a progressive decrease in size of the planktonic tests and a reduction in diversity of the planktonic assemblage. Thus a study of the relationships between the planktonic and benthic foraminiferids in these areas gives a measure of proximity to or isolation from the ocean. It is suggested that these relationships are useful tools in the interpretation of palaeoecology and in the reconstruction of former patterns of water circulation.  相似文献   
113.
Recession of high‐mountain glaciers in response to climatic change frequently results in the development of moraine‐dammed glacial lakes. Moraine dam failure is often accompanied by the release of large volumes of water and sediment, termed a Glacial Lake Outburst Flood (GLOF). Chukhung Glacier is a small (~3 km2) receding valley glacier in Mt. Everest (Sagarmatha) National Park, Nepal. Unlike many Himalayan glaciers, which possess a thick mantle of supraglacial debris, its surface is relatively clean. The glacier terminus has receded 1.3 km from its maximum Holocene position, and in doing so provided the space for an ice‐contact moraine‐dammed lake to develop. The lake had a maximum volume of 5.5 × 105 m3 and drained as a result of breaching of the terminal moraine. An estimated 1.3 × 105 m3 of material was removed from the terminal moraine during breach development. Numerical dam‐breach modelling, implemented within a Generalised Likelihood Uncertainty Estimation (GLUE) framework, was used to investigate a range of moraine‐dam failure scenarios. Reconstructed outflow peak discharges, including failure via overtopping and piping mechanisms, are in the range 146–2200 m3 s‐1. Results from two‐dimensional hydrodynamic GLOF modelling indicate that maximum local flow depths may have exceeded 9 m, with maximum flow velocities exceeding 20 m s‐1 within 700 m of the breach. The floodwaters mobilised a significant amount of material, sourced mostly from the expanding breach, forming a 300 m long and 100 m wide debris fan originating at the breach exit. moraine‐dam. These results also suggest that inundation of the entire floodplain may have been achieved within ten minutes of initial breach development, suggesting that debris fan development was rapid. We discuss the key glaciological and geomorphological factors that have determined the evolution of a hazardous moraine‐dammed lake complex and the subsequent generation of a GLOF and its geomorphological impact. © 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
114.
In the last several years evidence has mounted that a series of abrupt changes in sediment delivery and palaeoceanography effected the North Atlantic; they are recorded in a variety of proxy records but most dramatically in changes of grain-size and mineralogy associated with postulated iceberg rafting events, specifically Heinrich (H) events. This review paper examines the evidence for such evidence prior to the development of the ‘Heinrich event’ concept (1988–1992), and then examines the explosion of data and correlations that stemmed from the acceptance and use of this paradigm. Specific attention is focused on ideas pertaining to the cause(s) of glaciological mechanisms, sediment delivery, and sediment source, and major gaps in our understanding of the underlying glaciological, glacial geological, and glacial marine processes are stressed. Abrupt changes across boundaries associated with H-2 in the Labrador Sea are illustrated from core HU87033-009LCF. The case is made that correlations between records need to be more rigorous, especially within the range of radiocarbon dating, but it appears that abrupt changes in the delivery of iceberg rafted debris, which characterize these intervals, are multisourced. It is unclear how global ‘climate’ can simultaneously influence the abrupt behaviour of ice margins in different parts of the world—for marine-based margins, changes in relative sea-level are one possibility. A qualitative model is presented for triggering H events, which includes global changes in mass balance, changes in relative sea-level at ice margins due to glacial isostasy, and changes in the basal thermal regime of tidewater ice-streams. © 1998 John Wiley & Sons, Ltd.  相似文献   
115.
116.
Several independent lines of observational evidence of the existence of kinetic Alfvén waves (KAWs) in the solar wind are briefly reviewed. Each piece of evidence is inconclusive when considered separately, but when taken together, it is reasonable to conclude from these observations that KAWs in the form of kinetic Alfvén turbulence are almost always present in the free-flowing solar wind near 1 AU and, by inference, perhaps throughout much of the heliosphere.  相似文献   
117.
Mapping and sampling with DSRV “Alvin” has established that sulfide blocks 0.5 m across, dredged from the axial valley of the Endeavour Segment at 47°57′N, are samples of unusually large sulfide structures. The steep-sided structures, up to 30 m in length, 20 m in height, and 10–15 m across, are localized by venting along normal faults at the base of the western axial valley wall, and are distributed for about 200 m along strike paralleling the 020 trend of the ridge crest. High-temperature fluids (350 to more than 400°C) pass through the massive sulfide structures and enter seawater through small, concentric “nozzle-like” features projecting from the top or the sides of the larger vent structures. Diffuse, low-temperature flow is pervasive in the vicinity of the active sulfide structures, exiting from basalt and sulfide surfaces alike. Evidence of recent volcanic activity is sparse.The two largest samples taken with the dredge would not have been recoverable using the submersible. These samples represent massive, complex portions of the sulfide structures which were not closely associated with rapid high-temperature fluid flow at the time of sampling; they contain textural evidence of sealed hydrothermal fluid exit channels. Mineralogy is dominated by Fe sulfides nnd amorphous silica. Pyrite, marcasite, wurtzite, chalcopyrite, and iss are the most common sulfide phases. Pyrrhotite, galena, and sphalerite are present in trace amounts. Barite, amorphous silica, and chalcedony are the only non-sulfide phases; anhydrite is not observed in any of the dredge samples, although it is common in the chimney-like samples recovered by “Alvin”.Specific mineralogical-textural zones within the dredge samples are anaoogous to individual layers in East Pacific Rise at 21°N and southern Juan de Fuca Ridge samples, with two exceptions: a coarse-grained, highly porous Fe sulfide-rich interior containing sulfidized tubeworm casts, and a 2–5 cm thick zone near the outer margin of the samples dominated by late stage amorphous silica. The porous interior may have formed by dendritic crystal growth from a slowly circulating fluid within a large enclosed chamber. The amorphous silica deposited from a seawater/hydrothermal fluid mixture percolating slowly through the walls of the enclosed chamber; conductive cooling of the fluid as it traversed the walls allowed amorphous silica to precipitate. These silica-rich zones are the densest, most durable portions of the structures and may be responsible for the lasting stability of the large sulfide features.Observations in these samples are consistent with two distinct phases of development. Phase 1 is analogous to chimney growth and construction at 21°N and ends when flow channels become sealed to rapid flow of through-going fluid. The flow is evidently redirected within the structure. Phase 2 includes dissolution of anhydrite and precipitation of amorphous silica during conductive cooling of sluggishly circulating hydrothermal fluid or seawater/hydrothermal fluid mixtures. Evolution of vent structures through phase 2 allows lateral and vertical growth of unusually large structures.  相似文献   
118.
Watershed structure influences the timing, magnitude, and spatial location of water and solute entry to stream networks. In turn, stream reach transport velocities and stream network geometry (travel distances) further influence the timing of export from watersheds. Here, we examine how watershed and stream network organization can affect travel times of water from delivery to the stream network to arrival at the watershed outlet. We analysed watershed structure and network geometry and quantified the relationship between stream discharge and solute velocity across six study watersheds (11.4 to 62.8 km2) located in the Sawtooth Mountains of central Idaho, USA. Based on these analyses, we developed stream network travel time functions for each watershed. We found that watershed structure, stream network geometry, and the variable magnitude of inputs across the network can have a pronounced affect on water travel distances and velocities within a stream network. Accordingly, a sample taken at the watershed outlet is composed of water and solutes sourced from across the watershed that experienced a range of travel times in the stream network. We suggest that understanding and quantifying stream network travel time distributions are valuable for deconvolving signals observed at watershed outlets into their spatial and temporal sources, and separating terrestrial and in‐channel hydrological, biogeochemical, and ecological influences on in‐stream observations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
119.
Dune stratification types, which include grainfall, grainflow and ripple lamination, provide a record of the fine‐scale processes that deposited sediment on palaeo‐dune foresets. While these facies are relatively easy to distinguish in some cross‐bedded sandstones, for others – like the Permian Coconino Sandstone of northern and central Arizona – discrete stratification styles are hard to recognize at the bedding scale. Furthermore, few attempts have been made to classify fine‐scale processes in this sandstone, despite its renown as a classic aeolian dune deposit and Grand Canyon formation. To interpret depositional processes in the Coconino Sandstone, cross‐bed facies were characterized using a suite of sedimentary textures and structures. Bedding parameters were described at multiple scales via a combination of field and laboratory methods, including annotated outcrop photomosaics, strike and dip measurements, sandstone disaggregation and laser‐diffraction particle analysis, high‐resolution scans of thin sections, and scanning electron microscopy. Cross‐beds were observed to be laterally extensive along‐strike, with most dip angles ranging from the mid‐teens to mid‐twenties. While some cross‐bed sets are statistically coarser near their bases, others exhibit no significant vertical sorting trends. Both massive and laminated textures are visible in high‐resolution scans of thin sections, but laminae contacts are commonly indistinct, making normal and reverse grading difficult to define. Diagenetic features, such as stylolite seams and large pores, are also present in some samples and might indicate alteration of original textures like detrital clay laminae and carbonate minerals. Observed textures and sedimentary structures suggest that the cross‐beds may consist of grainflow and grainfall deposits, but these remain difficult to differentiate at outcrop and thin‐section scales. This characterization of fine‐scale processes will play a critical part in the development of depositional models for the Coconino Sandstone and elucidate interpretations for similar cross‐bedded formations.  相似文献   
120.
Studies of marble panels from the exterior of two buildings document the processes leading to bowing of the material. Bowing of panels is most extensive in those areas that are exposed to direct or reflected thermal energy. The thermal anisotropic behavior of calcite results in grain-boundary separation, grain sliding and microfracturing. The resulting loss of strength is one factor leading to bowing. The development of bows further reduces the panel strength as the outer portions elongate by inelastic deformation mechanisms. Laboratory experiments cycling marble samples for over 200 cycles at three temperatures up to 107°C above room conditions show similar strength losses as the natural situation. The second factor contributing to the bowing process is the release of residual elastic strain. The strain is in part stored in the marble from its geologic history, but may also be accumulated during thermal cycling due to the properties of calcite. Marble panels have been found to bow when stored outside, but not attached to any framework, indicating that the release of residual strain is a critical factor in producing the bows.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号