首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8249篇
  免费   289篇
  国内免费   96篇
测绘学   199篇
大气科学   567篇
地球物理   1924篇
地质学   2977篇
海洋学   750篇
天文学   1209篇
综合类   19篇
自然地理   989篇
  2021年   89篇
  2020年   114篇
  2019年   114篇
  2018年   166篇
  2017年   162篇
  2016年   226篇
  2015年   194篇
  2014年   196篇
  2013年   470篇
  2012年   249篇
  2011年   308篇
  2010年   282篇
  2009年   338篇
  2008年   319篇
  2007年   279篇
  2006年   315篇
  2005年   238篇
  2004年   291篇
  2003年   262篇
  2002年   264篇
  2001年   173篇
  2000年   170篇
  1999年   141篇
  1998年   141篇
  1997年   103篇
  1996年   115篇
  1995年   114篇
  1994年   128篇
  1993年   114篇
  1992年   113篇
  1991年   110篇
  1990年   101篇
  1989年   85篇
  1988年   87篇
  1987年   122篇
  1986年   100篇
  1985年   163篇
  1984年   186篇
  1983年   144篇
  1982年   126篇
  1981年   131篇
  1980年   108篇
  1979年   124篇
  1978年   119篇
  1977年   103篇
  1976年   96篇
  1975年   91篇
  1974年   67篇
  1973年   83篇
  1972年   49篇
排序方式: 共有8634条查询结果,搜索用时 0 毫秒
51.
This study examines the spatial and temporal variability of chemical denudation rates in Kärkevagge, northern Sweden. The chemical flux rates within the valley are strongly influenced by the local geology. Chemical denudation rates determined for the study period are more than double those previously reported in the literature for this valley. Rates of greater than 46t km−2 a−1 were measured at the valley mouth over the course of the melt season. This difference is likely due to differences in measurement technique compared to that used by past researchers. This rate is also much higher than for other arctic and alpine watersheds. Chemical denudation in Kärkevagge is comparable to larger temperate rivers. The rapid chemical denudation in Kärkevagge is likely due to sulfide weathering creating acid solutions.  相似文献   
52.
53.
Seafloor geomorphology and surficial stratigraphy of the New Jersey middle continental shelf provide a detailed record of sea-level change during the last advance and retreat of the Laurentide ice sheet (120 kyr B.P. to Present). A NW–SE-oriented corridor on the middle shelf between water depths of 40 m (the mid-shelf “paleo-shore”) and 100 m (the Franklin “paleo-shore”) encompasses 500 line-km of 2D Huntec boomer profiles (500–3500 Hz), an embedded 4.6 km2 3D volume, and a 490 km2 swath bathymetry map. We use these data to develop a relative stratigraphy. Core samples from published studies also provide some chronological and sedimentological constraints on the upper <5 m of the stratigraphic succession.The following stratigraphic units and surfaces occur (from bottom to top): (1) “R”, a high-amplitude reflection that separates sediment >46.5 kyr old (by AMS 14C dating) from overlying sediment wedges; (2) the outer shelf wedge, a marine unit up to 50 m thick that onlaps “R”; (3) “Channels”, a reflection sub-parallel to the seafloor that incises “R”, and appears as a dendritic system of channels in map view; (4) “Channels” fill, the upper portion of which is sampled and known to represent deepening-upward marine sediments 12.3 kyr in age; (5) the “T” horizon, a seismically discontinuous surface that caps “Channels” fill; (6) oblique ridge deposits, coarse-grained shelly units comprised of km-scale, shallow shelf bedforms; and (7) ribbon-floored swales, bathymetric depressions parallel to modern shelf currents that truncate the oblique ridges and cut into surficial deposits.We interpret this succession of features in light of a global eustatic sea-level curve and the consequent migration of the coastline across the middle shelf during the last 120 kyr. The morphology of the New Jersey middle shelf shows a discrete sequence of stratigraphic elements, and reflects the pulsed episodicity of the last sea-level cycle. “R” is a complicated marine/non-marine erosional surface formed during the last regression, while the outer shelf wedge represents a shelf wedge emplaced during a minor glacial retreat before maximum Wisconsin lowstand (i.e., marine oxygen isotope stage 3.1). “Channels” is a widespread fluvial subarial erosion surface formed at the late Wisconsin glacial maximum 22 kyr B.P. The shoreline migrated back across the mid-shelf corridor non-uniformly during the period represented by “Channels” fill. Oblique ridges are relict features on the New Jersey middle shelf, while the ribbon-floored swales represent modern shelf erosion. There is no systematic relationship between modern seafloor morphology and the very shallowly buried stratigraphic succession.  相似文献   
54.
Marine manganese nodules and crusts, when processed, yield tailings which may be utilized for environmental and economic benefit. The key to the reasonable and effective utilization of these tailings lies in making a systematic appraisal of their composition and properties. This article gives an introduction to the investigation of manganese tailings properties. The tailings have a high iron and/or manganese content, high surface area, high porosity, and fine grain size. Some tailings have a high rare earth element content which is valuable. They may also have high SO3, arsenic, and uranium contents which are harmful. Depending on the process used to produce the tailings, there will likely be some differences in chemical composition, mineral assemblages, surface area and adsorption capability, pore diameter and volume, density and pH. In assigning potentially beneficial applications for these tailings, these differences should be taken into account to optimize utilization.  相似文献   
55.
56.
By measuring the decaying shape of the scatter-broadened pulse from the bright distant pulsar PSR J1644−4559, we probe waves scattered at relatively high angles by very small spatial scales in the interstellar plasma, which allows us to test for a wavenumber cutoff in the plasma density spectrum. Under the hypothesis that the density spectrum is due to plasma turbulence, we can thus investigate the (inner) scale at which the turbulence is dissipated. We report observations carried out with the Parkes radio telescope at 660 MHz from which we find strong evidence for an inner scale in the range 70–100 km, assuming an isotropic Kolmogorov spectrum. By identifying the inner scale with the ion inertial scale, we can also estimate the mean electron density of the scattering region to be 5–10 cm−3. This is comparable with the electron density of H  ii region G339.1−0.4, which lies in front of the pulsar, and so confirms that this region dominates the scattering. We conclude that the plasma inside the region is characterized by fully developed turbulence with an outer scale in the range 1–20 pc and an inner scale of 70–100 km. The shape of the rising edge of the pulse constrains the distribution of the strongly scattering plasma to be spread over about 20 per cent of the 4.6 kpc path from the pulsar, but with similarly high electron densities in two or more thin layers, their thicknesses can only be 10–20 pc.  相似文献   
57.
58.
59.
New multichannel seismic reflection data were collected over a 565 km transect covering the non-volcanic rifted margin of the central eastern Grand Banks and the Newfoundland Basin in the northwestern Atlantic. Three major crustal zones are interpreted from west to east over the seaward 350 km of the profile: (1) continental crust; (2) transitional basement and (3) oceanic crust. Continental crust thins over a wide zone (∼160 km) by forming a large rift basin (Carson Basin) and seaward fault block, together with a series of smaller fault blocks eastwards beneath the Salar and Newfoundland basins. Analysis of selected previous reflection profiles (Lithoprobe 85-4, 85-2 and Conrad NB-1) indicates that prominent landward-dipping reflections observed under the continental slope are a regional phenomenon. They define the landward edge of a deep serpentinized mantle layer, which underlies both extended continental crust and transitional basement. The 80-km-wide transitional basement is defined landwards by a basement high that may consist of serpentinized peridotite and seawards by a pair of basement highs of unknown crustal origin. Flat and unreflective transitional basement most likely is exhumed, serpentinized mantle, although our results do not exclude the possibility of anomalously thinned oceanic crust. A Moho reflection below interpreted oceanic crust is first observed landwards of magnetic anomaly M4, 230 km from the shelf break. Extrapolation of ages from chron M0 to the edge of interpreted oceanic crust suggests that the onset of seafloor spreading was ∼138 Ma (Valanginian) in the south (southern Newfoundland Basin) to ∼125 Ma (Barremian–Aptian boundary) in the north (Flemish Cap), comparable to those proposed for the conjugate margins.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号