首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8241篇
  免费   289篇
  国内免费   96篇
测绘学   199篇
大气科学   566篇
地球物理   1922篇
地质学   2973篇
海洋学   750篇
天文学   1209篇
综合类   19篇
自然地理   988篇
  2021年   90篇
  2020年   113篇
  2019年   115篇
  2018年   166篇
  2017年   162篇
  2016年   226篇
  2015年   194篇
  2014年   196篇
  2013年   469篇
  2012年   248篇
  2011年   307篇
  2010年   282篇
  2009年   338篇
  2008年   319篇
  2007年   279篇
  2006年   314篇
  2005年   237篇
  2004年   291篇
  2003年   262篇
  2002年   264篇
  2001年   173篇
  2000年   170篇
  1999年   141篇
  1998年   141篇
  1997年   103篇
  1996年   114篇
  1995年   114篇
  1994年   128篇
  1993年   113篇
  1992年   113篇
  1991年   109篇
  1990年   101篇
  1989年   85篇
  1988年   87篇
  1987年   122篇
  1986年   100篇
  1985年   163篇
  1984年   186篇
  1983年   144篇
  1982年   126篇
  1981年   131篇
  1980年   108篇
  1979年   124篇
  1978年   118篇
  1977年   103篇
  1976年   96篇
  1975年   91篇
  1974年   67篇
  1973年   83篇
  1972年   49篇
排序方式: 共有8626条查询结果,搜索用时 15 毫秒
991.
This paper proposes and demonstrates a two-layer depth-averaged model with non-hydrostatic pressure correction to simulate landslide-generated waves. Landslide (lower layer) and water (upper layer) motions are governed by the general shallow water equations derived from mass and momentum conservation laws. The landslide motion and wave generation/propagation are separately formulated, but they form a coupled system. Our model combines some features of the landslide analysis model DAN3D and the tsunami analysis model COMCOT and adds a non-hydrostatic pressure correction. We use the new model to simulate a 2007 rock avalanche-generated wave event at Chehalis Lake, British Columbia, Canada. The model results match both the observed distribution of the rock avalanche deposit in the lake and the wave run-up trimline along the shoreline. Sensitivity analyses demonstrate the importance of accounting for the non-hydrostatic dynamic pressure at the landslide-water interface, as well as the influence of the internal strength of the landslide on the size of the generated waves. Finally, we compare the numerical results of landslide-generated waves simulated with frictional and Voellmy rheologies. Similar maximum wave run-ups can be obtained using the two different rheologies, but the frictional model better reproduces the known limit of the rock avalanche deposit and is thus considered to yield the best overall results in this particular case.  相似文献   
992.
Coastal habitat use and residency of a coastal bay by juvenile Atlantic sharpnose sharks, Rhizoprionodon terraenovae, were examined by acoustic monitoring, gillnet sampling, and conventional tag–recapture. Acoustic monitoring data were used to define the residency and movement patterns of sharks within Crooked Island Sound, Florida. Over 3 years, sharks were monitored for periods of 1–37 days, with individuals regularly moving in and out of the study site. Individual sharks were continuously present within the study site for periods of 1–35 days. Patterns of movement could not be correlated with time of day. Home range sizes were typically small (average?=?1.29 km2) and did not vary on a yearly basis. Gillnet sampling revealed that juvenile Atlantic sharpnose sharks were present in all habitat types found within Crooked Island Sound, and peaks in abundance varied depending on month within a year. Although telemetry data showed that most individuals remained within the study site for short periods of time before emigrating, conventional tag–recapture data indicates some individuals return to Crooked Island Sound after extended absences (maximum length?=?1,352 days). Although conventional shark nursery theory suggests small sharks remain in shallow coastal waters to avoid predation, juvenile Atlantic sharpnose sharks frequently exited from protected areas and appear to move through deeper waters to adjacent coastal bays and estuaries. Given the high productivity exhibited by this species, the benefit gained through a nursery that reduces predation may be limited for this species.  相似文献   
993.
The Sakoa Group is the lowermost stratigraphical succession of the Karoo Supergroup and the oldest sedimentary unit in Madagascar, spanning the Late Carboniferous through Early Permian epochs. The Sakoa Group is exposed in the southern Morondava Basin. It is predominantly a siliciclastic sequence comprising seven lithofacies associations: (1) diamictites; (2) conglomeratic sandstones; (3) sandstones; (4) interbedded thin sandstones and mudstones; (5) mudstones; (6) coals; and (7) limestones. These facies represent deposition in the early extensional stages of continental rift development. The sediments were deposited predominantly on alluvial fans, and in braided to meandering stream and overbank environments. Locally lacustrine and coal swamp environments formed in low areas of the basin floor during rift initiation. Subsidence rates remained fairly constant throughout the Early Permian and were accompanied by a gradual reduction in relief of the basin margins and an increased geomorphic maturity of the fluvial systems flowing across the basin floor. Near the end of the Early Permian the southern Morondava Basin was inundated by a marine transgression , which resulted in deposition of the Vohitolia Limestone. Subsequent tectonic uplift and erosion resulted in a regional unconformity between the Sakoa Group and the overlying Sakamena Group.  相似文献   
994.
Natural and synthetic chemicals are essential to our daily lives, food supplies, health care, industries and safe sanitation. At the same time protecting marine ecosystems and seafood resources from the adverse effects of chemical contaminants remains an important issue. Since the 1970s, monitoring of persistent, bioaccumulative and toxic (PBT) chemicals using analytical chemistry has provided important spatial and temporal trend data in three important contexts; relating to human health protection from seafood contamination, addressing threats to marine top predators and finally providing essential evidence to better protect the biodiversity of commercial and non-commercial marine species. A number of regional conventions have led to controls on certain PBT chemicals over several years (termed ‘legacy contaminants’; e.g. cadmium, lindane, polycyclic aromatic hydrocarbons [PAHs] and polychlorinated biphenyls [PCBs]). Analytical chemistry plays a key role in evaluating to what extent such regulatory steps have been effective in leading to reduced emissions of these legacy contaminants into marine environments. In parallel, the application of biomarkers (e.g. DNA adducts, CYP1A-EROD, vitellogenin) and bioassays integrated with analytical chemistry has strengthened the evidence base to support an ecosystem approach to manage marine pollution problems. In recent years, however, the increased sensitivity of analytical chemistry, toxicity alerts and wider environmental awareness has led to a focus on emerging chemical contaminants (defined as chemicals that have been detected in the environment, but which are currently not included in regulatory monitoring programmes and whose fate and biological impacts are poorly understood). It is also known that natural chemicals (e.g. algal biotoxins) may also pose a threat to marine species and seafood quality. Hence complex mixtures of legacy contaminants, emerging chemicals and natural biotoxins in marine ecosystems represent important scientific, economic and health challenges. In order to meet these challenges and pursue cost-effective scientific approaches that can provide evidence necessary to support policy needs (e.g. the European Marine Strategy Framework Directive), it is widely recognised that there is a need to (i) provide marine exposure assessments for priority contaminants using a range of validated models, passive samplers and biomarkers; (ii) integrate chemical monitoring data with biological effects data across spatial and temporal scales (including quality controls); and (iii) strengthen the evidence base to understand the relationship between exposure to complex chemical mixtures, biological and ecological impacts through integrated approaches and molecular data (e.g. genomics, proteomics and metabolomics). Additionally, we support the widely held view that (iv) that rather than increasing the analytical chemistry monitoring of large number of emerging contaminants, it will be important to target analytical chemistry towards key groups of chemicals of concern using effects-directed analysis. It is also important to evaluate to what extent existing biomarkers and bioassays can address various classes of emerging chemicals using the adverse outcome pathway (AOP) approach now being developed by the Organization for Economic Cooperation and Development (OECD) with respect to human toxicology and ecotoxicology.  相似文献   
995.
Sediments are the ultimate sink for contaminants in the marine environment, and physical processes of sedimentation influence the distribution and accumulation of these contaminants. Evaluation of contaminant levels in sediments is one approach to assessing environmental impact; data interpretation depends on consideration of sediment texture and mineralogy, however, which profoundly influence chemical composition. In this study, comparison of potentially contaminated sediments from the production field with control populations was done only within the context of similar (as to texture and organic carbon and carbonate content) sample groups as determined by cluster analysis. Ba, Cd, and Sr are identified as contaminants. Supported by the identification of a well-crystallized expandable clay—possibly bentonite—drilling fluids are a potential source of Ba. Ba and Sr may be unnaturally high because of their abundance in discharged produced formation waters, but may also be naturally controlled by the unique faunal assemblage associated with the structures. Cd is probably derived from corrosion of the structures and assorted debris on the seafloor. In general, contamination is limited to an area within 100 m of the platforms. Furthermore, substantial erosion around platforms has probably effectively removed and dispersed the bulk of the contaminants introduced into the marine environment by the offshore exploration/production operations.  相似文献   
996.
Petrography and geochemistry (major, trace and rare earth elements) of clastic rocks from the Lower Cambrian Lalun Formation, in the Posht-e-badam block, Central Iran, have been investigated to understand their provenance. Petrographical analysis suggests that the Lalun conglomerates are dominantly with chert clasts derived from a proximal source, probably chert bearing Precambrian Formations. Similarly, purple sandstones are classified as litharenite (chertarenite) and white sandstones as quartzarenite types. The detrital modes of purple and white sandstones indicate that they were derived from recycled orogen (uplifted shoulders of rift) and stable cratonic source. Most major and trace element contents of purple sandstones are generally similar to upper continental crust (UCC) values. However, white sandstones are depleted in major and trace elements (except SiO2, Zr and Co) relative to UCC, which is mainly due to the presence of quartz and absence of other Al-bearing minerals. Shale samples have considerably lower content in most of the major and trace elements concentration than purple sandstones, which is possibly due to intense weathering and recycling. Modal composition (e.g., quartz, feldspar, lithic fragments) and geochemical indices (Th/Sc, La/Sc, Co/Th, Cr/Th, Cr/V and V/Ni ratios) of sandstones, and shales (La/Sc and La/Cr ratios) indicate that they were derived from felsic source rocks and deposited in a passive continental margin. The chondrite-normalized rare earth element (REE) patterns of the studied samples are characterized by LREE enrichment, negative Eu anomaly and flat HREE similar to an old upper continental crust composed chiefly of felsic components in the source area. The study of paleoweathering conditions based on modal composition, chemical index of alteration (CIA), plagioclase index of alteration (PIA) and A–CN–K (Al2O3 − CaO + Na2O − K2O) relationships indicate that probably chemical weathering in the source area and recycling processes have been more important in shale and white sandstones relative to purple sandstones. The results of this study suggest that the main source for the Lalun Formation was likely located in uplifted shoulders of a rifted basin (probably a pull-apart basin) in its post-rift stage (Pan-African basement of the Posht-e-badam block).  相似文献   
997.
Arrays of unpumped wells can be used as discontinuous permeable walls in which each well serves both as a means to focus ground water flow into the well for treatment and as a container either for permeable reactive media which directly destroy dissolved ground water contaminants or for devices or materials which release amendments that support in situ degradation of contaminants within the aquifer downgradient of the wells. This paper addresses the use of wells for amendment delivery, recognizing the potential utility of amendments such as electron acceptors (e.g., oxygen nitrate), electron donors (primary substrates), and microbial nutrients for stimulating bioremediation, and the potential utility of oxidizers, reducers, etc., for controlled abiotic degradation. Depending on its rate and constraints, the remedial reaction may occur within the well and/or downgradient. For complete remediation of ground water passing through the well array, the total flux of amendment released must meet or exceed the total flux demand imposed by the plume. When there are constraints on the released concentration of amendment (relative to the demand), close spacing of the wells may be required. If the flux balance allows wider spacing, it is likely that limited downgradient spreading of the released amendment will then be the primary constraint on interwell spacing. Divergent flow from the wells, roughly two times the well diameter, provides the bulk of downgradient spreading and constrains maximum well spacing in the absence of significant lateral dispersion. Stronger lateral dispersion enhances the spreading of amendment, thereby increasing the lateral impact of each well, which allows for wider well spacing.  相似文献   
998.
Soputan is a high-alumina basalt stratovolcano located in the active North Sulawesi-Sangihe Islands magmatic arc. Although immediately adjacent to the still geothermally active Quaternary Tondono Caldera, Soputan’s magmas are geochemically distinct from those of the caldera and from other magmas in the arc. Unusual for a basalt volcano, Soputan produces summit lava domes and explosive eruptions with high-altitude ash plumes and pyroclastic flows—eight explosive eruptions during the period 2003–2011. Our field observations, remote sensing, gas emission, seismic, and petrologic analyses indicate that Soputan is an open-vent-type volcano that taps basalt magma derived from the arc-mantle wedge, accumulated and fractionated in a deep-crustal reservoir and transported slowly or staged at shallow levels prior to eruption. A combination of high phenocryst content, extensive microlite crystallization and separation of a gas phase at shallow levels results in a highly viscous basalt magma and explosive eruptive style. The open-vent structure and frequent eruptions indicate that Soputan will likely erupt again in the next decade, perhaps repeatedly. Explosive eruptions in the Volcano Explosivity Index (VEI) 2–3 range and lava dome growth are most probable, with a small chance of larger VEI 4 eruptions. A rapid ramp up in seismicity preceding the recent eruptions suggests that future eruptions may have no more than a few days of seismic warning. Risk to population in the region is currently greatest for villages located on the southern and western flanks of the volcano where flow deposits are directed by topography. In addition, Soputan’s explosive eruptions produce high-altitude ash clouds that pose a risk to air traffic in the region.  相似文献   
999.
An improved seismic hazard model for use in performance‐based earthquake engineering is presented. The model is an improved approximation from the so‐called ‘power law’ model, which is linear in log–log space. The mathematics of the model and uncertainty incorporation is briefly discussed. Various means of fitting the approximation to hazard data derived from probabilistic seismic hazard analysis are discussed, including the limitations of the model. Based on these ‘exact’ hazard data for major centres in New Zealand, the parameters for the proposed model are calibrated. To illustrate the significance of the proposed model, a performance‐based assessment is conducted on a typical bridge, via probabilistic seismic demand analysis. The new hazard model is compared to the current power law relationship to illustrate its effects on the risk assessment. The propagation of epistemic uncertainty in the seismic hazard is also considered. To allow further use of the model in conceptual calculations, a semi‐analytical method is proposed to calculate the demand hazard in closed form. For the case study shown, the resulting semi‐analytical closed form solution is shown to be significantly more accurate than the analytical closed‐form solution using the power law hazard model, capturing the ‘exact’ numerical integration solution to within 7% accuracy over the entire range of exceedance rate. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
1000.
Sediment cores from the shallow and deep basins of Pyramid Lake, Nevada, revealed variations in composition with depth reflecting changes in lake level, river inflow, and lake productivity. Recent sediments from the period of historical record indicate: (1) CaCO3 and organic content of sediment in the shallow basin decrease at lower lake level, (2) CaCO3 content of deep basin sediments increases when lake level decreases rapidly, and (3) the inorganic P content of sediments increases with decreasing lake volume. Variations in sediment composition also indicate several periods for which productivity in Pyramid Lake may have been elevated over the past 1000 years. Our data provide strong evidence for increased productivity during the first half of the 20th Century, although the typical pattern for cultural eutrophication was not observed. The organic content of sediments also suggests periods of increased productivity in the lake prior to the discovery and development of the region by white settlers. Indeed, a broad peak in organic fractions during the 1800's originates as an increase starting around 1600. However, periods of changing organic content of sediments also correspond to periods when inflow to the lake was probably at extremes (e.g. drought or flood) indicating that fluctuations in river inflow may be an important factor affecting sediment composition in Pyramid Lake.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号