首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37166篇
  免费   808篇
  国内免费   316篇
测绘学   928篇
大气科学   2785篇
地球物理   7521篇
地质学   13610篇
海洋学   3272篇
天文学   7408篇
综合类   84篇
自然地理   2682篇
  2021年   352篇
  2020年   399篇
  2019年   407篇
  2018年   881篇
  2017年   876篇
  2016年   1049篇
  2015年   644篇
  2014年   984篇
  2013年   1989篇
  2012年   1150篇
  2011年   1505篇
  2010年   1317篇
  2009年   1671篇
  2008年   1470篇
  2007年   1431篇
  2006年   1450篇
  2005年   1061篇
  2004年   1114篇
  2003年   1010篇
  2002年   1017篇
  2001年   875篇
  2000年   852篇
  1999年   679篇
  1998年   650篇
  1997年   696篇
  1996年   576篇
  1995年   579篇
  1994年   594篇
  1993年   488篇
  1992年   490篇
  1991年   462篇
  1990年   466篇
  1989年   422篇
  1988年   427篇
  1987年   484篇
  1986年   420篇
  1985年   578篇
  1984年   590篇
  1983年   581篇
  1982年   533篇
  1981年   488篇
  1980年   500篇
  1979年   440篇
  1978年   413篇
  1977年   389篇
  1976年   359篇
  1975年   347篇
  1974年   334篇
  1973年   332篇
  1971年   209篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
Reaction zones around minerals in mantle xenoliths have been reported from many localities worldwide. Interpretations of the origins of these textures fall into two groups: mantle metasomatic reaction or reaction during transport of the xenoliths to the surface. A suite of harzburgitic mantle xenoliths from Sal, Cape Verde show clear evidence of reaction during transport. The reactions resulted in the formation of olivine–clinopyroxene and Si- and alkali-rich glass reaction zones around orthopyroxene and sieve-textured clinopyroxene and sieve textured spinel, both of which are associated with a Si- and alkali-rich glass similar to that in the orthopyroxene reaction zones. Reaction occurred at pressures less than the mantle equilibration pressure and at temperatures close to the liquidus temperature of the host magma. In addition, there is a clear spatial relation of reaction with the host lava: reaction is most intense near the lava/xenolith contact. The residence time of the xenoliths in the host magma, determined from Fe–Mg interdiffusion profiles in olivine, was approximately 4 years. Our results cannot be reconciled with a recent model for the evolution of the mantle below the Cape Verde Archipelago involving mantle metasomatism by kimberlitic melt. We contend that alkali-rich glasses in the Sal xenoliths are not remnants of a kimberlitic melt, but rather they are the result of reaction between the host lava or a similar magma and xenolith minerals, in particular orthopyroxene. The formation of a Si- and alkali-rich glass by host magma–orthopyroxene reaction appears to be a necessary precursor to formation of sieve textured spinel and clinopyroxene.  相似文献   
942.
A collection of quartz veinlets with ore mineralization sampled from the dumps of the abandoned pit of the Kirov mine was analyzed with defining the mineral assemblages productive for gold mineralization and determining the composition of the main ore minerals and their typomorphic features, which are used for interpreting the genesis of the mineral associations and the deposit as a whole.  相似文献   
943.
Proterozoic mafic dykes from the southwestern Vestfold Block experienced heterogeneous granulite facies metamorphism, characterized by spotted or fractured garnet‐bearing aggregates in garnet‐absent groundmass. The garnet‐absent groundmass typically preserves an ophitic texture composed of lathy plagioclase, intergranular clinopyroxene and Fe–Ti oxides. Garnet‐bearing domains consist mainly of a metamorphic assemblage of garnet, clinopyroxene, orthopyroxene, hornblende, biotite, plagioclase, K‐feldspar, quartz and Fe–Ti oxides. Chemical compositions and textural relationships suggest that these metamorphic minerals reached local equilibrium in the centre of the garnet‐bearing domains. Pseudosection calculations in the model system NCFMASHTO (Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3) yield PT estimates of 820–870 °C and 8.4–9.7 kbar. Ion microprobe U–Pb zircon dating reveals that the NW‐ and N‐trending mafic dykes were emplaced at 1764 ± 25 and 1232 ± 12 Ma, respectively, whereas their metamorphic ages cluster between 957 ± 7 and 938 ± 9 Ma. The identification of granulite facies mineral inclusions in metamorphic zircon domains is also consistent with early Neoproterozoic metamorphism. Therefore, the southwestern margin of the Vestfold Block is inferred to have been buried to depths of ~30–35 km beneath the Rayner orogen during the late stage of the late Mesoproterozoic/early Neoproterozoic collision between the Indian craton and east Antarctica (i.e. the Lambert Terrane or the Ruker craton including the Lambert Terrane). The lack of penetrative deformation and intensive fluid–rock interaction in the rigid Vestfold Block prevented the nucleation and growth of garnet and resulted in the heterogeneous granulite facies metamorphism of the mafic dykes.  相似文献   
944.
Glauconite from eight stratigraphic horizons (Cambrian to Pennsylvanian) in the Llano Uplift, central Texas and two Cretaceous glauconites were analyzed by the Rb-Sr method. Only two untreated samples provide ages in agreement with those anticipated from current best estimates of the geologic time scale. With one exception all the other apparent ages fall short of the estimated age of deposition by as much as 22%. Low ages, the pattern customarily observed, are attributed to postdepositional loss of radiogenic 87Sr from expandable layers by weathering or during diagenesis.Detailed leaching experiments using a variety of reagents were performed to characterize the behavior of glauconite. The most promising treatment, which we recommend as standard procedure in all future studies, is with ammonium acetate which is able to purge the mineral of loosely-bound Rb and Sr while leaving tightly-bound components intact. After appropriate leach, three other Rb-Sr ages were brought into coincidence with their estimated ages of deposition.In contrast an Upper Cambrian glauconite was found to be extremely resistant to further alteration by chemical attack′, providing an age of 429 ± 17 M yr. Although 17% short of the age of deposition, this age is interpreted as the time of a real event: diagenetic recrystallization induced by burial. Comparison of data from four samples indicates that for Paleozoic glauconite, conditions exist in which the Rb-Sr system is less susceptible to mild disturbance than is the K-Ar system.  相似文献   
945.
The Main Hill Arkasani Granophyre Pluton (MAG), a product of Proterozoic intraplate acid magmatic activity, represents an anatectic melt of the enveloping rocks of dominantly pelitic composition with subordinate trondhjemitic gneiss and basic rocks. Petrography, chemistry, correlation between compositional attributes, areal variation of volume percent granophyric intergrowth, and varimax rotated factor analysis of compositional attributes of these rocks suggest that in the MAG pluton, plagioclase phenocrysts and biotite crystallized first, followed by change of level of emplacement of the magma when the groundmass started crystallizing at a rapid rate. The rapid growth of quartz and alkali feldspar crystallizing from the residual melt gave rise to the ubiquitous granophyric intergrowth in the late stage of crystallization. The alkali-rich residual liquid tended to concentrate toward the margin of the pluton where there is a profusion of granophyric intergrowths.  相似文献   
946.
Samples of quartz-bearing rocks were heated above the α (trigonal)–β (hexagonal) phase transformation of quartz (625–950°C) to explore changes in preferred orientation patterns. Textures were measured both in situ and ex situ with neutron, synchrotron X-ray and electron backscatter diffraction. The trigonal–hexagonal phase transformation does not change the orientation of c- and a-axes, but positive and negative rhombs become equal in the hexagonal β-phase. In naturally deformed quartzites measured by neutron diffraction a perfect texture memory was observed, i.e. crystals returned to the same trigonal orientation they started from, with no evidence of twin boundaries. Samples measured by electron back-scattered diffraction on surfaces show considerable twinning and memory loss after the phase transformation. In experimentally deformed quartz rocks, where twinning was induced mechanically before heating, the orientation memory is lost. A mechanical model can explain the memory loss but so far it does not account for the persistence of the memory in quartzites. Stresses imposed by neighboring grains remain a likely cause of texture memory in this mineral with a very high elastic anisotropy. If stresses are imposed experimentally the internal stresses are released during the phase transformation and the material returns to its original state prior to deformation. Similarly, on surfaces there are no tractions and thus texture memory is partially lost.  相似文献   
947.
Dajing is a large-scale tin–polymetallic deposit that hosts the largest tin mine in North China. It is a hydrothermal vein-type deposit containing Sn, Cu, Pb, Zn, Ag, and minor components Co and In. The deposit consists of more than 690 veins hosted within Upper Permian sedimentary rocks.Three mineralization stages and six ore types are recognized with cassiterite constituting the dominant tin mineral. The SnO2 content of cassiterite increases in the sequence of mineralization stages shear-deformation→cassiterite–quartz→cassiterite–sulfide (or chalcopyrite–pyrite) stage, while the content of FeO, TiO2, Nb2O5, Ta2O5, and In2O5 tends to decrease with increases in NiO and Ga2O5. It is considered that the negative correlation between SnO2 and FeO, Nb2O5, Ta2O5, and In2O5 results from elemental substitutions. The early stage cassiterite is much richer in Ta and the later stage cassiterite is much poorer in Ti and Fe than is usual in hydrothermal vein type tin deposits. This is interpreted to indicate that the component of early stage cassiterite reflects a granitic magma source while the composition of later stage cassiterite has a more obvious strata source. The compositional variation of cassiterite corresponds to decreasing crystallization temperatures within each stage and between sequential stages with time. The characteristics of REE in cassiterite from two stages are in accord with that of subvolcanic rocks and the Linxi formation. It suggests that tin transported during the cassiterite–quartz stage may have originated from subvolcanic dikes (e.g., dacite porphyry), while in the cassiterite–sulfide stage, tin may have been derived from wallrock (e.g. siltstone) of the Upper Permian-age Linxi Formation.  相似文献   
948.
Metapelites, migmatites and granites from the c. 2 Ga Mahalapye Complex have been studied for determining the PT–fluid influence on mineral assemblages and local equilibrium compositions in the rocks from the extreme southwestern part of the Central Zone of the Limpopo high‐grade terrane in Botswana. It was found that fluid infiltration played a leading role in the formation of the rocks. This conclusion is based on both well‐developed textures inferred to record metasomatic reactions, such as Bt ? And + Qtz + (K2O) and Bt ± Qtz ? Sil + Kfs + Ms ± Pl, and zonation of Ms | Bt + Qtz | And + Qtz and Grt | Crd | Pl | Kfs + Qtz reflecting a perfect mobility (Korzhinskii terminology) of some chemical components. The conclusion is also supported by the results of a fluid inclusion study. CO2 and H2O ( = 0.6) are the major components of the fluid. The fluid has been trapped synchronously along the retrograde PT path. The PT path was derived using mineral thermobarometry and a combination of mineral thermometry and fluid inclusion density data. The Mahalapye Complex experienced low‐pressure granulite facies metamorphism with a retrograde evolution from 770 °C and 5.5 kbar to 560 °C and 2 kbar, presumably at c. 2 Ga.  相似文献   
949.
Mantle xenoliths (lherzolites, clinopyroxene dunites, wehrlites, and clinopyroxenites) in the Early Cretaceous volcanic rocks of Makhtesh Ramon (alkali olivine basalts, basanites, and nephelinites) represent metasomatized mantle, which served as a source of basaltic melts. The xenoliths bear signs of partial melting and previous metasomatic transformations. The latter include the replacement of orthopyroxene by clinopyroxene in the lherzolites and, respectively, the wide development of wehrlites and olivine clinopyoroxenites. Metasomatic alteration of the peridotites is accompanied by a sharp decrease in Mg, Cr, and Ni, and increase of Ti, Al, Ca contents and 3+Fe/2+Fe ratio, as well as the growth of trace V, Sc, Zr, Nb, and Y contents. The compositional features of the rocks such as the growth of 3+Fe/2+Fe and the wide development of Ti-magnetite in combination with the complete absence of sulfides indicate the high oxygen fugacity during metasomatism and the low sulfur concentration, which is a distinctive signature of fluid mode during formation of the Makhtesh Ramon alkali basaltic magma. Partial melting of peridotites and clinopyroxenites is accompanied by the formation of basanite or alkali basaltic melt. Clino- and orthopyroxenes are subjected to melting. The crystallization products of melt preserved in the mantle rock are localized in the interstices and consist mainly of fine-grained clinopyroxene, which together with Ti-magnetite, ilmenite, amphibole, rhenite, feldspar, and nepheline, is cemented by glass corresponding to quartz–orthopyroxene, olivine–orthopyroxene, quartz–feldspar, or nepheline–feldspar mixtures of the corresponding normative minerals. The mineral assemblages of xenoliths correspond to high temperatures. The high-Al and high-Ti clinopyroxene, calcium olivine, feldspar, and feldspathoids, amphibole, Ti-magnetite, and ilmenite are formed at 900–1000°. The study of melt and fluid inclusions in minerals from xenoliths indicate liquidus temperatures of 1200–1250°C, solidus temperatures of 1000–1100°C, and pressure of 5.9–9.5 kbar. Based on the amphibole–plagioclase barometer, amphibole and coexisting plagioclase were crystallized in clinopyroxenites at 6.5–7.0 kbar.  相似文献   
950.
We report for the first time the occurrence of rare phosphate wagnerite as a stable phase from the Mg–Al granulites of Sonapahar. The wagnerite bearing assemblages consist of the spinel, phlogopite, brucite and corundum. The wagnerite appears in the Mg–Al granulites due to the break-down of spinel and fluorapatite. The mineral chemistry of the phases has been discussed from the EPMA data, which reveals that the fluorine content of the wagnerite is relatively low due to the exchange of F to coexisting phases. The major oxide analysis of the rocks show the low content of Ca, which is the requisite for the occurrences of wagnerite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号