首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55781篇
  免费   937篇
  国内免费   1263篇
测绘学   2183篇
大气科学   4330篇
地球物理   11472篇
地质学   22417篇
海洋学   3656篇
天文学   8000篇
综合类   2209篇
自然地理   3714篇
  2020年   238篇
  2019年   233篇
  2018年   5074篇
  2017年   4348篇
  2016年   3121篇
  2015年   701篇
  2014年   678篇
  2013年   1608篇
  2012年   1680篇
  2011年   3637篇
  2010年   2817篇
  2009年   3408篇
  2008年   2918篇
  2007年   3278篇
  2006年   1150篇
  2005年   1112篇
  2004年   1400篇
  2003年   1331篇
  2002年   1175篇
  2001年   787篇
  2000年   801篇
  1999年   700篇
  1998年   689篇
  1997年   649篇
  1996年   559篇
  1995年   558篇
  1994年   551篇
  1993年   502篇
  1992年   476篇
  1991年   423篇
  1990年   463篇
  1989年   372篇
  1988年   416篇
  1987年   480篇
  1986年   413篇
  1985年   619篇
  1984年   684篇
  1983年   653篇
  1982年   533篇
  1981年   554篇
  1980年   546篇
  1979年   486篇
  1978年   489篇
  1977年   433篇
  1976年   457篇
  1975年   416篇
  1974年   436篇
  1973年   434篇
  1972年   275篇
  1971年   223篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
961.
Given incident logarithmic profiles of wind and pollutant concentration above a rough, absorbing surface, the three-dimensional distribution of pollutant concentration over a hill of gentle slope is determined from a linearized model. The model is applied in neutrally stratified flow, without chemistry, and is integrated using spectral methods in the horizontal and a finite-difference scheme in the vertical. This approach allows for flexibility in choosing a closure scheme and a variety of surface boundary conditions. This was not possible in the analytic approach of Padro (1987) who added pollutant concentration and flux to the MS3DJH/1 model of Walmsley et al. (1980). The present model requires as input the turbulent kinetic energy, E, dissipation, , and the perturbation vertical velocity, w, from the three-dimensional boundary-layer flow model of Beljaars et al. (1987), hereinafter referred to as MSFD, The latter model also supplies wind velocity perturbations at the upper boundary, as input to upper boundary conditions on the pollutant flux perturbations.The present study describes applications of the model to idealized terrain features: isolated two- and three-dimensional hills and ridges and an infinite series of ridges. (Application to real terrain, however, presents no difficulties.) Comparisons were made with different (though uniform) surface roughnesses. Tests were performed to examine the effect of upstream terrain features in the periodic domain and to illustrate the importance of the vertical resolution of the output for interpreting results from the sinusoidal terrain case.  相似文献   
962.
Over 200 H, O, Sr, Nd, and Pb isotope analyses, in addition to geologic and petrologic constraints, document the magmatic evolution of the 28.5–19 Ma Latir volcanic field and associated intrusive rocks, which includes multiple stages of crustal assimilation, magma mixing, protracted crystallization, and open- and closed-system evolution in the upper crust. In contrast to data from younger volcanic centers in northern New Mexico, relatively low and restricted primary 18O values (+6.4 to +7.4) rule out assimilation of supracrustal rocks enriched in 18O. Initial 87Sr/86Sr ratios (0.705 to 0.708), 18O values (-2 to-7), and 206Pb/204Pb ratios (17.5 to 18.4) of metaluminous precaldera volcanic rocks and postcaldera plutonic rocks suggest that most Latir rocks were generated by fractional crystallization of substantial volumes of mantle-derived basaltic magma that had near-chondritic Nd isotope ratios, accompanied by assimilation of crustal material in two main stages: 1) assimilation of non-radiogenic lower crust, followed by 2) assimilation of middle and upper crust by inter-mediate-composition magmas that had been contaminated during the first stage. Magmatic evolution in the upper crust peaked with eruption of the peralkaline Amalia Tuff (26 Ma), which evolved from metaluminous parental magmas. A third stage of late, roofward assimilation of Proterozoic rocks in the Amalia Tuff magma is indicated by trends in initial 87Sr/86Sr and 206Pb/204Pb ratios from 0.7057 to 0.7098 and 19.5 to 18.8, respectively, toward the top of the pre-eruptive magma chamber. Highly evolved postcaldera plutons are generally fine grained and are zoned in initial 87Sr/86Sr and 206Pb/204Pb ratios, varying from 0.705 to 0.709 and 17.8 to 18.6, respectively. In contrast, the coarser-grained Cabresto Lake (25 Ma) and Rio Hondo (21 Ma) plutons have relatively homogeneous initial 87Sr/86Sr and 206Pb/204Pb ratios of approximately 0.7053 and 17.94 and 17.55, respectively. 18O values for all the postcaldera plutons overlap those of the precaldera rocks and Amalia Tuff, except for those for two late-stage rhyolite dikes associated with the Rio Hondo pluton that have 18O values of-8.6 and-9.5; these dikes are the only Latir rocks which may be largely crustal melts.Chemical and isotopic data from the Latir field suggest that large fluxes of mantle-derived basaltic magma are necessary for developing and sustaining large-volume volcanic centers. Development of a detailed model suggests that 6–15 km of new crust may have been added beneath the volcanic center; such an addition may result in significant changes in the chemical and Sr and Nd isotopic compositions of the crust, although Pb isotope ratios will remain relatively unchanged. If accompanied by assimilation, crystallization of pooled basaltic magma near the MOHO may produce substantial cumulates beneath the MOHO that generate large changes in the isotopic composition of the upper mantle. The Latir field may be similar to other large-volume, long-lived intracratonal volcanic fields that fundamentally owe their origins to extensive injection of basaltic magma into the lower parts of their magmatic systems. Such fields may overlie areas of significant crustal growth and hybridization.  相似文献   
963.
The carbon isotopic fractionation between CO2 vapour and sodamelilite (NaCaAlSi2O7) melt over a range of pressures and temperatures has been investigated using solid-media piston-cylinder high pressure apparatus. Ag2C2O4 was the source of CO2 and experimental oxygen fugacity was buffered at hematite-magnetite by the double capsule technique. The abundance and isotopic composition of carbon dissolved in sodamelilite (SM) glass were determined by stepped heating and the 13C of coexisting vapour was determined directly by capsule piercing. CO2 solubility in SM displays a complex behavior with temperature. At pressures up to 10 kbars CO2 dissolves in SM to form carbonate ion complexes and the solubility data suggest slight negative temperature dependence. Above 20 kbars CO2 reacts with SM to form immiscible Na-rich silicate and Ca-rich carbonate melts and CO2 solubility in Na-enriched silicate melt rises with increasing temperature above the liquidus. Measured values for carbon isotopic fractionation between CO2 vapour and carbonate ions dissoived in sodamelilite melt at 1200°–1400° C and 5–30 kbars average 2.4±0.2, favouring13C enrichment in CO2 vapour. The results are maxima and are independent of pressure and temperature. Similar values of 2 are obtained for the carbon isotopic fractionation between CO2 vapour and carbonate melts at 1300°–1400° C and 20–30 kbars.  相似文献   
964.
The Siljan Ring is a 362-Ma-old impact structure formed in 1700-Ma-old I-type granites. A 6.8-km-deep borehole provides a vertical profile through granites and isolated horizontal diabase sills. Fluid-inclusion thermometry, and oxygen-isotope compositions of vein quartz, granite, diabase, impact melt, and pseudotachylite, reveal a complex history of fluid activity in the Siljan Ring, much of which can be related to the meteorite impact. In granites from the deep borehole, 18O values of matrix quartz increase with depth from near 8.0 at the surface to 9.5 at 5760 m depth. In contrast, feldspar 18O values decrease with depth from near 10 at the surface to 7.1 at 5760 m, forming a pattern opposite to the one defined by quartz isotopic compositions. Values of 18O for surface granites outside the impact structure are distinct from those in near-surface samples from the deep borehole. In the deep borehole, feldspar coloration varies from brick-red at the surface to white at 5760 m, and the abundances of crack-healing calcite and other secondary minerals decrease over the same interval. Superimposed on the overall decrease in alteration intensity with depth are localized fracture zones at 4662, 5415, and 6044 m depth that contain altered granites, and which provided pathways for deep penetration of surface water. The antithetic variation of quartz and feldspar 18O values, which can be correlated with mineralogical evidence of alteration, provides evidence for interaction between rocks and impact-heated fluids (100–300° C) in the upper 2 km of the pluton. Penetration of water to depths below 2 km was restricted by a general decrease in impact-fracturing with depth, and by a 60-m-thick diabase sill at 1500 m depth that may have been an aquitard. At depths below 4 km in the pluton, where water/rock ratios were low, oxygen isotopic compositions preserve evidence for limited high-temperature (>500° C) exchange between alkali feldspar and fluids. The high-temperature exchange may have been a post-impact event involving impact-heated fluids, or a post-magmatic event.  相似文献   
965.
New single crystal diffraction data for natural and heat-treated anorthite crystals (Angel et al. 1990) allow the determination of their states of Al/Si order in terms of a macroscopic order parameter,Q OD , for the transition. Numerical values ofQ OD obtained from estimates of site occupancies are shown to vary with the scalar spontaneous strain, s , as s Q OD 2 , and with the ratio of the sums of typeb (superlattice) reflections and typea (sublattice) reflections asI b/I a Q OD 2 . An empirical calibration for pure anorthite is obtained giving varies between 0.92 and 0.87 in samples equilibrated at T1300° C, but then falls off relatively rapidly with increasing temperature, reaching 0.7 near the melting point ( 1557° C). The observed temperature dependence does not conform to the predictions of the simplest single order parameter models; coupling ofQ OD withQ of the transition is suspeeted.  相似文献   
966.
The Ashland pluton is a calc-alkaline plutonic complex thatintruded the western Paleozoic and Triassic belt of the KlamathMountains in late Middle Jurassic time. The pluton comprisesa series of compositionally distinct magma pulses. The oldestrocks are hornblende gabbro and two-pyroxene quartz gabbro withinitial 87Sr/86Sr = 0{dot}7044, 18O = 8{dot}7%, and REE patternswith chondrite normalized La/Lu = 7. These units were followedby a suite of tonalitic rocks (LaN/LuN = 7) and then by a suiteof K2O- and P2O5 rocks of quartz monzodioritic affinity (LaN/LuN= 13–21; LaN/SmN = 2{dot}4–3{dot}) The quartz monzodioriticrocks were then intruded by biotite granodiorite and granitewith lower REE abundances but more fractionated LREE(LaN/LuN= 13–19; LaN/SmN = 4{dot}3–6 and they, in turn,were host to dikes and bosses of hornblende diorite. The latestintrusive activity consisted of aplitic and granitic dikes.Combined phase equilibria and mineral composition data, indicateemplacement conditions of approximately Ptotal = 2{dot}3kb,PH2O between 1{dot}5 and 2{dot}2 kb, and fO2 between the nickel-nickeloxide and hematite-magnetite buffers. Successive pulses of magma display increasing SiO2 togetherwith increasing 18O and decreasing initial 87Sr/86Sr. The isotopicdata are consistent with either (1) combined fractional crystallizationof andesitic magma and concurrent assimilation of crustal materialcharacterized by low Sr1 and high (18O or, more probably, (2)a series of partial melting events in which sources were successivelyless radiogenic but richer in 18O Each intrusive stage displaysevidence for some degree of crystal accumulation and/or fractionalcrystallization but neither process adequately accounts fortheir compositional differences. Consequently, each stage appearsto represent a distinct partial melting or assimilation event. The P2O5-rich nature of the quartz monzodiorite suite suggestsaccumulation of apatite. However, the suite contains abundantmafic microgranitoid enclaves and most apatite in the suiteis acicular. These observations suggest that magma mixing affectedthe compositional variation of the quartz monzodiorite suite.Mass balance calculations are consistent with a simple mixingprocess in which P2O5-rich alkalic basalt magma (representedby the mafic microgranitoid enclaves) was combined with a crystal-poorfelsic magma (represented by the tonalite suite), yielding aquartz monzodioritic magma that then underwent differentiationby crystal fractionation and accumulation.  相似文献   
967.
Positron-electron pair radiation is examined as a mechanism that could be responsible for the impulsive phase emission of the 5 March, 1979 transient. Synchrotron cooling and subsequent annihilation of the pairs can account for the energy spectrum, the very high brightness, and the 0.4 MeV feature observed from this transient, whose source is likely to be a neutron star in the supernova remnant N49 in the Large Magellanic Cloud. In this model, the observed radiation is produced in the skin layer of a hot, radiation-dominated pair atmosphere, probably confined to the vicinity of the neutron star by a strong magnetic field. The width of this layer is only about 0.1 mm. In this layer, 1012 generations of pairs are formed (by photon-photon collisions), cooled and annihilated during the 0.15 s duration of the impulsive phase. The very large burst energy implied by the distance of the LMC, and its very rapid release, are unsolved problems. We mention, nonetheless, the possibility of neutron star vibrations, which could transport the energy coherently to the surface, heat the atmosphere mechanically to a hot, pair-producing temperature, and have a characteristic damping time roughly equal to the duration of the impulsive phase.Paper presented at the Symposium on Cosmic Gamma-Ray Bursts held at Toulouse, France, 26–29 November, 1979.  相似文献   
968.
Observations with the French (L.P.S.P.) experiment on board OSO-8 of a sunspot and nearby plage region are described. The behaviour of the emission cores of the Ca II H and K and Mg II h and k resonance lines is very similar and the correspondence in intensity between the four lines persists in all observed features. In contrast, the Lyman lines show little correlation with the other lines. Their emission regions appear broader in the spectroheliograms than the underlying sunspot structure and must not necessarily possess a counterpart in lower layers. From the central intensity of L above the umbra an electron density of 4.3 × 1010 cm-3 n e * 2.3 × 1011 cm-3 at 20 000 K is estimated.Mitteilungen aus dem Kiepenheuer-Institut Nr. 186.Stockholm Observatorium, S-13300 Saltsjöbaden, Sweden.Laboratoire de Physique Stellaire et Planétaire, CNRS, P.O. Box 10, F-91370 Verrières-le-Buisson, France.  相似文献   
969.
The formation and eruption of active region filaments is supposed to be caused by the increase of a concentrated current embedded in the active region background magnetic field of an active region according to the theory of Van Tend and Kuperus (1978).The onset of a filament eruption is due to either changes in the background magnetic field or the increase of the filament current intensity. Both processes can be caused by the emergence of new magnetic flux as well as by the motion of the photospheric footpoints of the magnetic field lines. It is shown that if the background field evolves from a potential field to a nearly force-free field the vertical equilibrium of the current filament is not affected, but large forces are generated along the filament axis. This is identified as the cause of filament activation and the increase in filament turbulence during the flare build-up phase. Depending on the evolution of the background field and the current filament, two different scenarios for flare build-up and filament eruption are distinguished.This work was done while one of the authors (M.K.) was participating in the CECAM workshop on Physics of Solar Flares held at Orsay, France, in June 1979.  相似文献   
970.
Using two original copies of Hevelius' Selenographia and reducing spot positions with two different methods, we found that the solar angular rotation velocity at the beginning of the Maunder minimum was about the same as today. The gradient of the differential rotation was slightly steeper than given in modern reductions, but not significantly different. These findings are in contradiction to those published by Eddy et al. (1976).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号