首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59304篇
  免费   842篇
  国内免费   1308篇
测绘学   2308篇
大气科学   5042篇
地球物理   12690篇
地质学   23451篇
海洋学   3559篇
天文学   8991篇
综合类   2237篇
自然地理   3176篇
  2020年   280篇
  2019年   266篇
  2018年   5271篇
  2017年   4540篇
  2016年   3481篇
  2015年   914篇
  2014年   1007篇
  2013年   1763篇
  2012年   1942篇
  2011年   3804篇
  2010年   3005篇
  2009年   3629篇
  2008年   3032篇
  2007年   3307篇
  2006年   1236篇
  2005年   1179篇
  2004年   1347篇
  2003年   1369篇
  2002年   1185篇
  2001年   880篇
  2000年   927篇
  1999年   721篇
  1998年   731篇
  1997年   728篇
  1996年   617篇
  1995年   605篇
  1994年   559篇
  1993年   473篇
  1992年   465篇
  1991年   456篇
  1990年   477篇
  1989年   441篇
  1988年   420篇
  1987年   501篇
  1986年   477篇
  1985年   509篇
  1984年   595篇
  1983年   602篇
  1982年   547篇
  1981年   551篇
  1980年   506篇
  1979年   473篇
  1978年   494篇
  1977年   430篇
  1976年   387篇
  1975年   394篇
  1974年   436篇
  1973年   430篇
  1972年   274篇
  1971年   262篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Mafic rocks in the Chipman domain of the Athabasca granulite terrane, western Canadian Shield, provide the first well‐documented record of two distinct high‐P granulite facies events in the same domain in this region. Textural relations and the results of petrological modelling (NCFMASHT system) of mafic granulites are interpreted in terms of a three‐stage tectonometamorphic history. Stage 1 involved development of the assemblage Grt + Cpx + Qtz ± Pl (M1) from a primary Opx‐bearing igneous precursor at conditions of 1.3 GPa, 850–900 °C. Field and microstructural observations suggest that M1 developed synchronously with an early S1 gneissic fabric. Stage 2 is characterized by heterogeneous deformation (D2) and synkinematic partial retrogression of the peak assemblage to an amphibole‐bearing assemblage (M2). Stage 3 involved a third phase of deformation and a return to granulite facies conditions marked by the prograde breakdown of amphibole (Amph2) to produce matrix garnet (Grt3a) and the coronitic assemblage Cpx3b + Opx3b + Ilm3b + Pl3b (M3b) at 1.0 GPa, 800–900 °C. M1 and M3b are correlated with 2.55 and 1.9 Ga metamorphic generations of zircon, respectively, which were dated in a separate study. Heterogeneous strain played a crucial role in both the development and preservation of these rare examples of multiple granulite facies events within single samples. Without this fortuitous set of circumstances, the apparent reaction history could have incorrectly led to an interpretation involving a single‐cycle high‐grade event. The detailed PTtD history constructed for these rocks provides the best evidence to date that much of the east Lake Athabasca region experienced long‐term lower crustal residence from 2.55 to 1.9 Ga, and thus the region represents a rare window into the reactivation and ultimate stabilization processes of cratonic lithosphere.  相似文献   
102.
Over a period of 4 years and 4 months, the geopurification installations at Dehesas de Guadix (Granada, Spain) were monitored to determine the impact on soil and groundwater of the controlled discharge of urban wastewater, and also to identify the best indicators of the entry of the recharged water into the aquifer. The installations are located in an area where the climate is Mediterranean sub-arid, with an average precipitation of less than 287 mm/year, and a rate of evapotranspiration that is almost three times greater. The system was controlled by determining the balance of majority nutrients and boron in the soil and in the groundwater, both at the points affected directly by the wastewater discharge and at others. The quantity of mass discharged was relatively large (COD 14,656 g/m2, NO3 85 g/m2, NO2 4 g/m2, NH4 2,425 g/m2, PO4 1,143 g/m2, K 1,531 g/m2, B 63 g/m2). It was observed that the elimination of nutrients within the soil (COD 97.5%, PO4 94.4%, K 59.17%, N total 18.8%, B 12.69%) was very efficient except for the nitrogen, which nevertheless did not reach the groundwater, as it was eliminated at deep levels of the unsaturated zone. Only 12.69% of the boron was removed, and appreciable, increasing amounts of this element did reach the groundwater. Unexpectedly, none of the majority nutrients behaved as a reliable indicator of the impact on groundwater; despite this, the boron and the bicarbonate did clearly reflect the arrival of the recharged water, and are proposed as the best indicators.  相似文献   
103.
Natural radioactivity in sediment of Wei River,China   总被引:1,自引:0,他引:1  
The concentrations of natural radionuclides in sediment of Wei River of China were measured using γ-ray spectrometry with the aim of estimating the radiation hazard as establishing a database for radioactivity levels of river sediment of China. The activity concentrations of 226Ra, 232Th and 40K in sediment samples ranged from 10.4 to 39.9 Bq kg−1, 15.3 to 54.8 Bq kg−1 and 514.8 to 1,175.5 Bq kg−1, respectively. The concentrations of these radionuclides were compared with the typical world values and the average activities of Chinese soil and Shaanxi soil. Radium equivalent activity (Raeq), external hazard index (H ex) and representative level index (I γr) were calculated for the samples to assess the radiation hazards arising due to the use of these sediment samples in the construction of dwellings. All the sediment samples have Raeq lower than the limit of 370 Bq kg−1, H ex less than unity and I γr close to 1 Bq kg−1. The overall mean outdoor terrestrial gamma dose rate is 64.8 nGy h−1 and the corresponding outdoor annual effective dose is 0.079 mSv. None of the studied location is considered a radiological risk and sediment can be safely used in construction.  相似文献   
104.
Quick-look assessments to identify optimal CO2 EOR storage sites   总被引:1,自引:0,他引:1  
A newly developed, multistage quick-look methodology allows for the efficient screening of an unmanageably large number of reservoirs to generate a workable set of sites that closely match the requirements for optimal CO2 enhanced oil recovery (EOR) storage. The objective of the study is to quickly identify miscible CO2 EOR candidates in areas that contain thousands of reservoirs and to estimate additional oil recovery and sequestration capacities of selected top options through dimensionless modeling and reservoir characterization. Quick-look assessments indicate that the CO2 EOR resource potential along the US Gulf Coast is 4.7 billion barrels, and CO2 sequestration capacity is 2.6 billion metric tons. In the first stage, oil reservoirs are screened and ranked in terms of technical and practical feasibility for miscible CO2 EOR. The second stage provides quick estimates of CO2 EOR potential and sequestration capacities. In the third stage, a dimensionless group model is applied to a selected set of sites to improve the estimates of oil recovery and storage potential using appropriate inputs for rock and fluid properties, disregarding reservoir architecture and sweep design. The fourth stage validates and refines the results by simulating flow in a model that describes the internal architecture and fluid distribution in the reservoir. The stated approach both saves time and allows more resources to be applied to the best candidate sites.  相似文献   
105.
A screening and ranking framework (SRF) has been developed to evaluate potential geologic carbon dioxide (CO2) storage sites on the basis of health, safety, and environmental (HSE) risk arising from CO2 leakage. The approach is based on the assumption that CO2 leakage risk is dependent on three basic characteristics of a geologic CO2 storage site: (1) the potential for primary containment by the target formation; (2) the potential for secondary containment if the primary formation leaks; and (3) the potential for attenuation and dispersion of leaking CO2 if the primary formation leaks and secondary containment fails. The framework is implemented in a spreadsheet in which users enter numerical scores representing expert opinions or published information along with estimates of uncertainty. Applications to three sites in California demonstrate the approach. Refinements and extensions are possible through the use of more detailed data or model results in place of property proxies.  相似文献   
106.
The shallow water wave simulation model-SWAN incorporated with a simple fine sediment erosion model is applied to Hangzhou Bay, China, to model the horizontal distribution of the maximum bottom orbital velocity and corresponding fine sediment erosion rates induced by: (1) southeasterly steady winds (5, 20 and 30 m/s), (2) southwesterly steady winds (5 and 20 m/s); (3) northwesterly steady winds (5 and 20 m/s); (4) east-southeasterly steady winds (5 and 20 m/s); (5) easterly steady winds (5 and 20 m/s) under closed and unclosed boundaries; and (6) unsteady winds during the slack water periods. Results suggest: (1) the steady wind wave-induced maximum bottom orbital velocities and corresponding fine sediment erosion rates generally increased with the increasing steady winds; (2) closed and unclosed boundary conditions had more significant influences on modeled fine sediment erosion rates under 5 m/s easterly steady winds than 20 m/s; and (3) steady and unsteady wind wave-induced maximum bottom currents could be significant in eroding fine sediment bed in Hangzhou Bay. The results show implications for geomorphology, sedimentology, coastal erosion, and environmental pollution mitigation in Hangzhou Bay.  相似文献   
107.
In 1983, inhabitants of the City of Morelia, Michoacán, Mexico, began to observe a series of differential settlements causing damages to constructions along linear trends parallel to a system of regional faults. The same phenomenon occurs in others cities of the Mexican Volcanic Belt (MVB), such as Celaya, Aguascalientes, and Querétaro, and is linked to a structurally controlled subsidence, caused by groundwater withdrawal, and the presence of geological faults. We define this subsidence type as Subsidence-Creep-Fault Processes (SCFP), based on the necessary elements for their generation, and we studied them through geophysical and geotechnical techniques. In Morelia, the geophysical investigations have been carried out using ground-penetrating radar (GPR). GPR profiles, perpendicular to the axis of the surface fault generated by the SCFP were carried out. The common-offset single-fold profiling was used, with a central frequency of 50 MHz. In all cases it has been possible to visualize a fault plane dividing two blocks, the presence of synthetic and antithetic faults, influence zones from 20 m to 40 m, and a maximum “net throw” of 4 m. Exploration trenches followed the same direction of the profiles obtained with GPR (perpendicular to the axis of the surface fault). These trenches exposed a fault plane dividing two blocks with different lithology, generating a maximum “net throw” of 4.40 m; as well they help in the determination of influence zones that varied from 14 m to 40 m.  相似文献   
108.
The Hong’an area (western Dabie Mountains) is the westernmost terrane in the Qinling-Dabie-Sulu orogen that preserves UHP eclogites. The ages of the UHP metamorphism have not been well constrained, and thus hinder our understanding of the tectonic evolution of this area. LA-ICPMS U–Pb age, trace element and Hf isotope compositions of zircons of a granitic gneiss and an eclogite from the Xinxian UHP unit in the Hong’an area were analyzed to constrain the age of the UHP metamorphism. Most zircons are unzoned or show sector zoning. They have low trace element concentrations, without significant negative Eu anomalies. These metamorphic zircons can be further subdivided into two groups according to their U–Pb ages, and trace element and Lu–Hf isotope compositions. One group with an average age of 239 ± 2 Ma show relatively high and variable HREE contents (527 ≥ LuN ≥ 14) and 176Lu/177Hf ratios (0.00008–0.000931), indicating their growth prior to a great deal of garnet growth in the late stage of continental subduction. The other group yields an average age of 227 ± 2 Ma, and shows consistent low HREE contents and 176Lu/177Hf ratios, suggesting their growth with concurrent garnet crystallization and/or recrystallization. These two groups of age are taken as recording the time of prograde HP to UHP and retrograde UHP–HP stages, respectively. A few cores have high Th/U ratios, high trace element contents, and a clear negative Eu anomaly. These features support a magmatic origin of these zircon cores. The upper intercept ages of 771 ± 86 and 752 ± 70 Ma for the granitic gneiss and eclogite, respectively, indicate that their protoliths probably formed as a bimodal suite in rifting zones in the northern margin of the Yangtze Block. Young Hf model ages (T DM1) of magmatic cores indicate juvenile (mantle-derived) materials were involved in their protolith formation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
109.
Basaltic pyroclastic volcanism takes place over a range of scales and styles, from weak discrete Strombolian explosions (~102–103 kg s?1) to Plinian eruptions of moderate intensity (107–108 kg s?1). Recent well-documented historical eruptions from Etna, Kīlauea and Stromboli typify this diversity. Etna is Europe's largest and most voluminously productive volcano with an extraordinary level and diversity of Strombolian to subplinian activity since 1990. Kīlauea, the reference volcano for Hawaiian fountaining, has four recent eruptions with high fountaining (>400 m) activity in 1959, 1960, 1969 (–1974) and 1983–1986 (–2008); other summit (1971, 1974, 1982) and flank eruptions have been characterized by low fountaining activity. Stromboli is the type location for mildly explosive Strombolian eruptions, and from 1999 to 2008 these persisted at a rate of ca. 9 per hour, briefly interrupted in 2003 and 2007 by vigorous paroxysmal eruptions. Several properties of basaltic pyroclastic deposits described here, such as bed geometry, grain size, clast morphology and vesicularity, and crystal content are keys to understand the dynamics of the parent eruptions.The lack of clear correlations between eruption rate and style, as well as observed rapid fluctuations in eruptive behavior, point to the likelihood of eruption style being moderated by differences in the fluid dynamics of magma and gas ascent and the mechanism by which the erupting magma fragments. In all cases, the erupting magma consists of a mixture of melt and gaseous bubbles. The depth and rate of degassing, melt rheology, bubble rise and coalescence rates, and extent of syn-eruptive microlite growth define complex feedbacks that permit reversible shifts between fragmentation mechanisms and in eruption style and intensity. However, many basaltic explosive eruptions end after an irreversible shift to open-system outgassing and microlite crystallization in melt within the conduit.Clearer understanding of the factors promoting this diversity of basaltic pyroclastic eruptions is of fundamental importance in order to improve understanding of the range of behaviors of these volcanoes and assess hazards of future explosive events at basaltic volcanoes. The three volcanoes used for this review are the sites of large and growing volcano-tourism operations and there is a public need both for better knowledge of the volcanoes’ behavior and improved forecasting of the likely course of future eruptions.  相似文献   
110.
Garnet-bearing schists from the Waterville Formation of south-central Maine provide an opportunity to examine the factors governing porphyroblast size over a range of metamorphic grade. Three-dimensional sizes and locations for all garnet porphyroblasts were determined for three samples along the metamorphic field gradient spanning lowest garnet through sillimanite grade, using high-resolution X-ray computed tomography. Comparison of crystal size distributions to previous data sets obtained by stereological methods for the same samples reveals significant differences in mode, mean, and shape of the distributions. Quantitative textural analysis shows that the garnets in each rock crystallized in a diffusion-controlled nucleation and growth regime. In contrast to the typical observation of a correlation between porphyroblast size and position along a metamorphic field gradient, porphyroblast size of the lowest-grade specimen is intermediate between the high- and middle-grade specimens’ sizes. Mean porphyroblast size does not correlate with peak temperatures from garnet-biotite Fe-Mg exchange thermometry, nor is post-crystallization annealing (Ostwald Ripening) required to produce the observed textures, as was previously proposed for these rocks. Robust pseudosection calculations fail to reproduce the observed garnet core compositions for two specimens, suggesting that these calc-pelites experienced metasomatism. For each of these two specimens, Monte Carlo calculations suggest potential pre-metasomatism bulk compositions that replicate garnet core compositions. Pseudosection analyses allow the estimation of the critical temperatures for garnet growth: ∼481, ∼477, and ∼485°C for the lowest-garnet-zone, middle-garnet-zone, and sillimanite-zone specimens, respectively. Porphyroblast size appears to be determined in this case by a combination of the heating rate during garnet crystallization, the critical temperature for the garnet-forming reaction and the kinetics of nucleation. Numerical simulations of thermally accelerated, diffusion-controlled nucleation, and growth for the three samples closely match measured crystal size distributions. These observations and simulations suggest that previous hypotheses linking the garnet size primarily to the temperature at the onset of porphyroblast nucleation can only partially explain the observed textures. Also important in determining porphyroblast size are the heating rate and the distribution of favorable nucleation sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号