Four high resolution atmospheric general circulation models (GCMs) have been integrated with the standard forcings of the
PRUDENCE experiment: IPCC-SRES A2 radiative forcing and Hadley Centre sea surface temperature and sea-ice extent. The response
over Europe, calculated as the difference between the 2071–2100 and the 1961–1990 means is compared with the same diagnostic
obtained with nine Regional Climate Models (RCM) all driven by the Hadley Centre atmospheric GCM. The seasonal mean response
for 2m temperature and precipitation is investigated. For temperature, GCMs and RCMs behave similarly, except that GCMs exhibit
a larger spread. However, during summer, the spread of the RCMs—in particular in terms of precipitation—is larger than that
of the GCMs. This indicates that the European summer climate is strongly controlled by parameterized physics and/or high-resolution
processes. The temperature response is larger than the systematic error. The situation is different for precipitation. The
model bias is twice as large as the climate response. The confidence in PRUDENCE results comes from the fact that the models
have a similar response to the IPCC-SRES A2 forcing, whereas their systematic errors are more spread. In addition, GCM precipitation
response is slightly but significantly different from that of the RCMs. 相似文献
Time domain electromagnetic (TDEM) soundings were utilized in site assessment studies for the purpose of accomplishing two objectives: (1) measuring the migration of brines from oil and gas field evaporation pits, and (2) mapping the continuity of clay strata. Both case histories are representative of common objectives in site assessment. The data for both examples were analyzed by one-dimensional ridge regression inversions. Both case histories illustrate that TDEM is an effective method for determining the lateral and vertical resistivity distribution (geoelectric section) of the subsurface in the depth range from about 5 m to 100 m, and it is known from other investigations that depths of investigations up to 2500 m can be achieved with TDEM. Frequently, the lateral extent of contaminant plumes emanating from localized sources are of limited areal extent. The case history involving the use of TDEM to map a brine plume shows that a TDEM measurement has a relatively small zone of influence, so that meaningful information about the lateral and vertical extent of the plume can be obtained. Both case histories demonstrate the ability of TDEM to determine geoelectric sections below layers of low resistivity. 相似文献
Since 1984, simultaneous observations of irradiance and velocity solar acoustic modes, have been carried out by several authors in order to measure the phase difference between irradiance and velocity modes. Following the earliest observations with stratospheric balloon (Frolich and van Der Raay, 1984), a two ground-based stations (Tenerife and Baja California) were established (Jimenez et al, 1990) obtaining coherence results in the frequency range from 2.5 mHz to 4.3 mHz. These phase differences between irradiance and velocity solar acoustic modes are interpreted in terms of the non-adiabatic behaviour of the solar atmosphere. In 1988 the IPHIR (Frolich et al, 1988) instrument flown on the PHOBOS-2 mission to Mars and measured the solar irradiance during 150 consecutive days. The best velocity observations obtained in Tenerife for this period were compared with IPHIR data to compute the phase differences (Schrijver et al, 1991). The final conclusion is that good agreement is attained between space quadsi-space and ground observations which yield a phase diffenrece of about -125 degrees in the frequency range 2.5 mHz to 4.2 mHz, with a slight increase suggested by the data running up to 4.6 mHz. 相似文献
Ocean Dynamics - Several years of surface wave observations in the Chukchi Sea reveal wave groups are a common feature in open water and ice-covered conditions. The strength of the groupiness, here... 相似文献
Several strike–slip faults at Crackington Haven, UK show evidence of right-lateral movement with tip cracks and dilatational jogs, which have been reactivated by left-lateral strike–slip movement. Evidence for reactivation includes two slickenside striae on a single fault surface, two groups of tip cracks with different orientations and very low displacement gradients or negative (left-lateral) displacements at fault tips.
Evidence for the relative age of the two strike–slip movements is (1) the first formed tip cracks associated with right-lateral slip are deformed, whereas the tip cracks formed during left-lateral slip show no deformation; (2) some of the tip cracks associated with right-lateral movement show left-lateral reactivation; and (3) left-lateral displacement is commonly recorded at the tips of dominantly right-lateral faults.
The orientation of the tip cracks to the main fault is 30–70° clockwise for right-lateral slip, and 20–40° counter-clockwise for left-lateral slip. The structure formed by this process of strike–slip reactivation is termed a “tree structure” because it is similar to a tree with branches. The angular difference between these two groups of tip cracks could be interpreted as due to different stress distribution (e.g., transtensional/transpressional, near-field or far-field stress), different fracture modes or fractures utilizing pre-existing planes of weakness.
Most of the d–x profiles have similar patterns, which show low or negative displacement at the segment fault tips. Although the d–x profiles are complicated by fault segments and reactivation, they provide clear evidence for reactivation. Profiles that experienced two opposite slip movements show various shapes depending on the amount of displacement and the slip sequence. For a larger slip followed by a smaller slip with opposite sense, the profile would be expected to record very low or reverse displacement at fault tips due to late-stage tip propagation. Whereas for a smaller slip followed by larger slip with opposite sense, the d–x profile would be flatter with no reverse displacement at the tips. Reactivation also decreases the ratio of dmax/L since for an original right-lateral fault, left lateral reactivation will reduce the net displacement (dmax) along a fault and increase the fault length (L).
Finally we compare Crackington Haven faults with these in the Atacama system of northern Chile. The Salar Grande Fault (SGF) formed as a left-lateral fault with large displacement in its central region. Later right-lateral reactivation is preserved at the fault tips and at the smaller sub-parallel Cerro Chuculay Fault. These faults resemble those seen at Crackington Haven. 相似文献
Large amounts of particles ejected from the nucleus surface are present in the vicinity of the cometary nuclei when comets
are near the Sun (at heliocentric distances ≤2 AU). The largest dust grains ejected may constitute a hazard for spatial vehicles.
We tried to obtain the bounded orbits of those particles and to investigate their stability along several orbital periods.
The model includes the solar and the cometary gravitational forces and the solar radiation pressure force. The nucleus is
assumed to be spherical. The dust grains are also assumed to be spherical, and radially ejected. We include the effects of
centrifugal forces owing to the comet rotation. An expression for the most heavy particles that can be lifted is proposed.
Using the usual values adopted for the case of Halley’s comet, the largest grains that can be lifted have a diameter about
5 cm, and the term due to the rotation is negligible. However, that term increases the obtained value for the maximum diameter
of the lifted grain in a significant amount when the rotation period is of the order of a few hours. 相似文献
A seasonal analysis of the atmospheric circulation over the Iberian Peninsula (IP) based on circulation types (CTs) obtained from sea level pressure and 500-hPa geopotential height is presented. The study covers the period of 1958–2008, when a high variability and important changes in winter and spring precipitation and temperature have been reported. Frequency, persistence, and the most probable transitions of the circulation types are analyzed. Among the clustering methods available in the literature, two of the most reliable classification methods have been tested, K-means and simulated annealing and diversified randomization. A comparison of both methods over the IP is presented for winter (DJF). The quality of the circulation types obtained through both methods as well as the better stability achieved by K-means suggest this method as more appropriated for our target area. Twelve CTs were obtained for each season and were analyzed. The patterns obtained were regrouped in five general situations: anticyclonic, cyclonic, zonal, summertime, and hybrid-mixed. The analysis of frequencies of these situations offers a similar characterization of the atmospheric circulation that others previously obtained by subjective methods. The analysis of the trends in frequency and persistence for each CT shows few significant trends, mainly in winter and spring with a general decrease of the cyclonic patterns and an increase of the anticyclonic situations. This can be related to the negative precipitation trends reported by other authors. Regarding the persistence, an interesting result is that there is a high interannual variability of the persistence in autumn and spring, when patterns can persist longer than in other seasons. An analysis of the most probable transitions between the CTs has been performed, revealing the existence of cyclic sequences in all seasons. These sequences are related to the high frequency of certain patterns such as the anticyclonic situations in winter. Finally, a clear seasonal dependence of the transitions between cyclonic situations associated with extratropical disturbances was found. This dependence suggests that the transitions of low-pressure systems towards the south of the IP are more likely in spring and autumn than in winter. 相似文献