首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   690篇
  免费   32篇
  国内免费   5篇
测绘学   42篇
大气科学   56篇
地球物理   229篇
地质学   203篇
海洋学   36篇
天文学   100篇
综合类   3篇
自然地理   58篇
  2023年   3篇
  2022年   12篇
  2021年   7篇
  2020年   16篇
  2019年   14篇
  2018年   17篇
  2017年   17篇
  2016年   28篇
  2015年   20篇
  2014年   26篇
  2013年   43篇
  2012年   32篇
  2011年   34篇
  2010年   24篇
  2009年   45篇
  2008年   29篇
  2007年   45篇
  2006年   35篇
  2005年   26篇
  2004年   25篇
  2003年   24篇
  2002年   23篇
  2001年   17篇
  2000年   17篇
  1999年   13篇
  1998年   17篇
  1997年   21篇
  1996年   6篇
  1995年   8篇
  1994年   10篇
  1993年   9篇
  1992年   6篇
  1991年   4篇
  1990年   6篇
  1989年   4篇
  1988年   4篇
  1987年   7篇
  1986年   5篇
  1985年   4篇
  1984年   2篇
  1983年   3篇
  1981年   2篇
  1977年   3篇
  1976年   2篇
  1975年   4篇
  1973年   2篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有727条查询结果,搜索用时 15 毫秒
721.
Climate change alone influences future levels of tropospheric ozone and their precursors through modifications of gas-phase chemistry, transport, removal, and natural emissions. The goal of this study is to determine at what extent the modes of variability of gas-phase pollutants respond to different climate change scenarios over Europe. The methodology includes the use of the regional modeling system MM5 (regional climate model version)-CHIMERE for a target domain covering Europe. Two full-transient simulations covering from 1991–2050 under the SRES A2 and B2 scenarios driven by ECHO-G global circulation model have been compared. The results indicate that the spatial patterns of variability for tropospheric ozone are similar for both scenarios, but the magnitude of the change signal significantly differs for A2 and B2. The 1991–2050 simulations share common characteristics for their chemical behavior. As observed from the NO2 and α-pinene modes of variability, our simulations suggest that the enhanced ozone chemical activity is driven by a number of parameters, such as the warming-induced increase in biogenic emissions and, to a lesser extent, by the variation in nitrogen dioxide levels. For gas-phase pollutants, the general increasing trend for ozone found under A2 and B2 forcing is due to a multiplicity of climate factors, such as increased temperature, decreased wet removal associated with an overall decrease of precipitation in southern Europe, increased photolysis of primary and secondary pollutants as a consequence of lower cloudiness and increased biogenic emissions fueled by higher temperatures.  相似文献   
722.
The adjustment of the boundary layer immediately downstream froma coastline is examined based on two levels of eddy correlation data collected on a mast at the shore and six levels of eddy correlation data and profiles of mean variables collected from a mast 2 km offshore during the Risø Air-Sea Experiment. The characteristics of offshore flow are studied in terms of case studies and inter-variable relationships for the entire one-month data set. A turbulent kinetic energy budget is constructed for each case study.The buoyancy generation of turbulence is small compared to shear generation and dissipation. However, weakly stable and weakly unstable cases exhibit completely different vertical structure. With flow of warm air from land over cooler water, modest buoyancy destruction of turbulence and reduced shear generation of turbulence over the less rough sea surface cause the turbulence to rapidly weaken downstream from the coast. The reduction of downward mixing of momentum by the stratification leads to smaller roughness lengths compared to the unstable case. Shear generation at higher levels and advection of stronger turbulence from land often lead to an increase of stress and turbulence energy with height and downward transport of turbulence energy toward the surface.With flow of cool air over a warmer sea surface, a convective internal boundary layer develops downstream from the coast. An overlying relatively thick layer of downward buoyancy flux (virtual temperature flux) is sometimes maintained by shear generation in the accelerating offshore flow.  相似文献   
723.
Synthetic rock samples can offer advantages over natural rock samples when used for laboratory rock physical properties studies, provided their success as natural analogues is well understood. The ability of synthetic rocks to mimic the natural stress dependency of elastic wave, electrical and fluid transport properties is of primary interest. Hence, we compare a consistent set of laboratory multi-physics measurements obtained on four quartz sandstone samples (porosity range 20–25%) comprising two synthetic and two natural (Berea and Corvio) samples, the latter used extensively as standards in rock physics research. We measured simultaneously ultrasonic (P- and S-wave) velocity and attenuation, electrical resistivity, permeability and axial and radial strains over a wide range of differential pressure (confining stress 15–50 MPa; pore pressure 5–10 MPa) on the four brine saturated samples. Despite some obvious physical discrepancies caused by the synthetic manufacturing process, such as silica cementation and anisotropy, the results show only small differences in stress dependency between the synthetic and natural sandstones for all measured parameters. Stress dependency analysis of the dry samples using an isotropic effective medium model of spheroidal pores and penny-shaped cracks, together with a granular cohesion model, provide evidence of crack closure mechanisms in the natural sandstones, seen to a much lesser extent in the synthetic sandstones. The smaller grain size, greater cement content, and cementation under oedometric conditions particularly affect the fluid transport properties of the synthetic sandstones, resulting in lower permeability and higher electrical resistivity for a similar porosity. The effective stress coefficients, determined for each parameter, are in agreement with data reported in the literature. Our results for the particular synthetic materials that were tested suggest that synthetic sandstones can serve as good proxies for natural sandstones for studies of elastic and mechanical properties, but should be used with care for transport properties studies.  相似文献   
724.
The exsolution of magmatic hydrosaline chloride liquids   总被引:14,自引:0,他引:14  
Jim D. Webster   《Chemical Geology》2004,210(1-4):33-48
Hydrosaline liquid represents the most Cl-enriched volatile phase that occurs in magmas, and the exsolution of this phase has important consequences for processes of hydrothermal mineralization and for volcanic emission of Cl to the atmosphere. To understand the exsolution of hydrosaline liquids in felsic to mafic magmas, the volatile abundances and (Cl/H2O) ratios of more than 1000 silicate melt inclusions (MI) have been compared with predicted and experimentally determined solubilities of Cl and H2O and associated (Cl/H2O) ratios of silicate melts that were saturated in hydrosaline chloride liquid with or without aqueous vapor in hydrothermal experiments. This approach identifies the minimum volatile contents and the values of (Cl/H2O) at which a hydrosaline chloride liquid exsolves from any CO2- or SO2-poor silicate melt. Chlorine solubility is a strong function of melt composition, so it follows that Cl solubility in magmas varies with melt evolution. Computations show that the (Cl/H2O) ratio of residual melt in evolving silicate magmas either remains constant or increases to a small extent with fractional crystallization. Consequently, the initial (Cl/H2O) in melt that is established early during partial melting has important consequences for the exsolution of vapor, vapor plus hydrosaline liquid, or hydrosaline liquid later during the final stages of melt ascent, emplacement, and crystallization or eruption. It is demonstrated that the melt (Cl/H2O) controls the type of volatile phase that exsolves, whereas the volatile abundances in melt control the relative timing of volatile phase exsolution (i.e., the time of earliest volatile exsolution relative to the rate of magma ascent and crystallization history).

Comparing melt inclusion compositions with experimentally determined (Cl/H2O) ratios and corresponding volatile solubilities of hydrosaline liquid-saturated silicate melts suggests that some fractions of the eruptive, calc-alkaline dacitic magmas of the Bonnin and Izu arcs should have saturated in and exsolved hydrosaline liquid at pressures of 2000 bars. Application of these same melt inclusion data to the predicted volatile solubilities of Cu-, Au-, and Mo-mineralized, calc-alkaline porphyritic magmas suggests that the chemical evolution of dioritic magmas to more-evolved quartz monzonite compositions involves a dramatic reduction in Cl solubility that increases the probability of hydrosaline liquid exsolution. The prediction that quartz monzonite magmas should exsolve a hydrosaline chloride liquid, that is potentially mineralizing, is consistent with the general observation of metal-enriched, hypersaline fluid inclusions in the more felsic plutons of numerous porphyry copper systems. Moreover, comparing the volatile contents of melt inclusions from the potassic, alkaline magmas of Mt. Somma-Vesuvius with the predicted (Cl/H2O) ratios of hydrosaline liquid-saturated melts having compositions similar to those of the volatile-rich, alkaline magmas associated with the orthomagmatic gold–tellurium deposits of Cripple Creek, Colorado, suggests that hydrosaline chloride liquid should have exsolved at Cripple Creek as the magmas evolved to phonolite compositions. This prediction is consistent with the well-documented role of Cl-enriched, mineralizing hydrothermal fluids at this major gold-mining district.  相似文献   

725.
The Hudson Bay Lowlands (HBL) stores a significant proportion of the northern peatland carbon pool, and constraints on the factors controlling local-scale variation are needed to better predict soil carbon stocks. We investigated two treed peatland sites, a fen and a bog, to understand how local ecohydrological factors impacted long-term carbon storage. Ecohydrological conditions were reconstructed using quantitative water table depth reconstructions from testate amoebae (TA) and broad peat type classifications. We also linked these factors and carbon storage to changes in TA community structure through the investigation of morphological and functional traits. Both sites have high rates of peat vertical accretion during the warmer Middle Holocene. A shift to a drier, Sphagnum-dominated habitat after 7400 cal a bp at the bog site, however, led to lower apparent carbon accumulation rates (aCARs) than at the fen site. aCARs decreased with the transition to a cooler Late Holocene climate at both sites. Both sites have higher total carbon masses (kg m−2) than other more open and younger HBL localities, demonstrating the potential importance of treed peatlands in regional carbon storage. Shifts in the frequency of TA traits corresponded to changing ecohydrological conditions and provided insights into the role of TA in carbon storage.  相似文献   
726.
The growth and decay of the end‐Ordovician Gondwanan glaciation is globally reflected by facies changes in sedimentary sequences, which record a major eustatic fall and subsequent rise in the Hirnantian Stage at the end of the Ordovician. However, there are different reported estimates of the magnitude and pattern of sea‐level change. Particularly good evidence for end‐Ordovician sea‐level change comes from a sequence at Meifod in central Wales, which has a karstified limestone unit within a channel incised into marine shelf sediments. Pre‐glacial (Rawtheyan) mudstones have a diverse fauna suggesting a mid‐to‐deep‐shelf water depth of c. 60 m. The channel, 20 m deep, was incised into these mudstones and partially filled with a mixture of fine sand and detrital carbonate. The taphonomy of bioclasts and intraclasts indicates that many had a long residence time on the sea floor or suffered diagenesis after shallow burial before being resedimented into the channel. The presence of carbonates on the Welsh shelf is atypical and they are interpreted as having accumulated as patches during a minor regression prior to the main glacio‐eustatic fall. Comparison of the carbon stable‐isotopic values of the bioclast material with the global isotopic record confirms that most of the material is of Rawtheyan age, but that some is Hirnantian. The resedimented carbonates lithified rapidly and formed a limestone, several metres thick, in the deepest parts of the channel. As sea‐level fell, this limestone was exposed and eroded into karstic domes and pillars with a relief of over 2 m. The overall, glacio‐eustatic, sea‐level fall is estimated to be in excess of 80 m. A succeeding sea‐level rise estimated to be 40–50 m is recorded in the laminated crust that mantles the karstic domes and pillars. The crust is formed of encrusting bryozoans, associated cystoids, crinoid holdfasts and clusters of the brachiopod Paromalomena, which is normally associated with mid‐shelf environments. Fine sands buried the karst topography and accumulated to fill the channel. In the sandstones at the base of the channel there is a Hirnantia fauna, while in the sandstones high in the channel‐sequence there is cross‐stratification characteristic of mid‐shoreface environments. This would indicate a fall of sea‐level of c. 30 m. The subsequent major transgression marking the end of the glaciation is not recorded at the Meifod locality, but nearby exposures of mudstones suggest a return to mid‐to‐deep‐shelf environments, similar to those that prevailed before the Hirnantian regression. The Meifod sequence provides strong evidence for the magnitude of the Hirnantian sea‐level changes and by implication confirm larger estimates for the size of the ice sheets. Smaller oscillations in relative sea‐level seen at Meifod may be local phenomena or may reflect eustatic changes that have not been widely reported elsewhere. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
727.
New relative sea-level (RSL) data constrain the timing and magnitude of RSL changes in the southern Isle of Skye following the Last Glacial Maximum (LGM). We identify a marine limit at ~23 m OD, indicating RSL ~20 m above present c. 15.1 ka. Isolation basin data, supported by terrestrial and marine limiting dates, record an RSL fall to 11.59 m above present by c. 14.2 ka. This RSL fall occurs across the time of global Meltwater Pulse 1A, supporting recent research on the sources of ice melting. Our new data also help to resolve some of the chronological issues within the existing Isle of Skye RSL record and provide details of the sub-Arctic marine environment associated with the transition into Devensian Lateglacial climate at c. 14.5 k cal a bp , and the timing of changes in response to the Loch Lomond Stadial climate. Glacio-isostatic adjustment (GIA) model predictions of RSL deviate from the RSL constraints and reflect uncertainties in local and global ice models used within the GIA models. An empirical RSL curve provides a target for future research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号