首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   690篇
  免费   32篇
  国内免费   5篇
测绘学   42篇
大气科学   56篇
地球物理   229篇
地质学   203篇
海洋学   36篇
天文学   100篇
综合类   3篇
自然地理   58篇
  2023年   3篇
  2022年   12篇
  2021年   7篇
  2020年   16篇
  2019年   14篇
  2018年   17篇
  2017年   17篇
  2016年   28篇
  2015年   20篇
  2014年   26篇
  2013年   43篇
  2012年   32篇
  2011年   34篇
  2010年   24篇
  2009年   45篇
  2008年   29篇
  2007年   45篇
  2006年   35篇
  2005年   26篇
  2004年   25篇
  2003年   24篇
  2002年   23篇
  2001年   17篇
  2000年   17篇
  1999年   13篇
  1998年   17篇
  1997年   21篇
  1996年   6篇
  1995年   8篇
  1994年   10篇
  1993年   9篇
  1992年   6篇
  1991年   4篇
  1990年   6篇
  1989年   4篇
  1988年   4篇
  1987年   7篇
  1986年   5篇
  1985年   4篇
  1984年   2篇
  1983年   3篇
  1981年   2篇
  1977年   3篇
  1976年   2篇
  1975年   4篇
  1973年   2篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有727条查询结果,搜索用时 15 毫秒
31.
32.
Recent research into flood modelling has primarily concentrated on the simulation of inundation flow without considering the influences of channel morphology. River channels are often represented by a simplified geometry that is implicitly assumed to remain unchanged during flood simulations. However, field evidence demonstrates that significant morphological changes can occur during floods to mobilize the boundary sediments. Despite this, the effect of channel morphology on model results has been largely unexplored. To address this issue, the impact of channel cross‐section geometry and channel long‐profile variability on flood dynamics is examined using an ensemble of a 1D–2D hydraulic model (LISFLOOD‐FP) of the ~1 : 2000 year recurrence interval floods in Cockermouth, UK, within an uncertainty framework. A series of simulated scenarios of channel erosional changes were constructed on the basis of a simple velocity‐based model of critical entrainment. A Monte‐Carlo simulation framework was used to quantify the effects of this channel morphology together with variations in the channel and floodplain roughness coefficients, grain size characteristics and critical shear stress on measures of flood inundation. The results showed that the bed elevation modifications generated by the simplistic equations reflected an approximation of the observed patterns of spatial erosion that enveloped observed erosion depths. The effect of uncertainty on channel long‐profile variability only affected the local flood dynamics and did not significantly affect the friction sensitivity and flood inundation mapping. The results imply that hydraulic models generally do not need to account for within event morphodynamic changes of the type and magnitude of event modelled, as these have a negligible impact that is smaller than other uncertainties, e.g. boundary conditions. Instead, morphodynamic change needs to happen over a series of events to become large enough to change the hydrodynamics of floods in supply limited gravel‐bed rivers such as the one used in this research. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
33.
34.
The alluvial architecture of fine‐grained (silt‐bed) meandering rivers remains poorly understood in comparison to the extensive study given to sand‐bed and gravel‐bed channels. This paucity of knowledge stems, in part, from the difficulty of studying such modern rivers and deriving analogue information from which to inform facies models for ancient sediments. This paper employs a new technique, the parametric echosounder, to quantify the subsurface structure of the Río Bermejo, Argentina, which is a predominantly silt‐bed river with a large suspended sediment load. These results show that the parametric echosounder can provide high‐resolution (decimetre) subsurface imaging from fine‐grained rivers that is equivalent to the more commonly used ground‐penetrating radar that has been shown to work well in coarser‐grained rivers. Analysis of the data reveals that the alluvial architecture of the Río Bermejo is characterized by large‐scale inclined heterolithic stratification generated by point‐bar evolution, and associated large‐scale scour surfaces that result from channel migration. The small‐scale and medium‐scale structure of the sedimentary architecture is generated by vertical accretion deposits, bed sets associated with small bars, dunes and climbing ripples and the cut and fill from small cross‐bar channels. This style of alluvial architecture is very different from other modern fine‐grained rivers reported in the literature that emphasize the presence of oblique accretion. The Río Bermejo differs from these other rivers because it is much more active, with very high rates of bank erosion and channel migration. Modern examples of this type of highly active fine‐grained river have been reported rarely in the literature, although ancient examples are more prevalent and show similarities with the alluvial architecture of the Río Bermejo, which thus represents a useful analogue for their identification and interpretation. Although the full spectrum of the sedimentology of fine‐grained rivers has yet to be revealed, meandering rivers dominated by lateral or oblique accretion probably represent end members of such channels, with the specific style of sedimentation being controlled by grain size and sediment load characteristics.  相似文献   
35.
36.
Constraining global average temperatures to 2 °C above pre-industrial levels will probably require global energy system emissions to be halved by 2050 and complete decarbonization by 2100. In the nationally orientated climate policy framework codified under the Paris Agreement, each nation must decide the scale and method of their emissions reduction contribution while remaining consistent with the global carbon budget. This policy process will require engagement amongst a wide range of stakeholders who have very different visions for the physical implementation of deep decarbonization. The Deep Decarbonization Pathways Project (DDPP) has developed a methodology, building on the energy, climate and economics literature, to structure these debates based on the following principles: country-scale analysis to capture specific physical, economic and political circumstances to maximize policy relevance, a long-term perspective to harmonize short-term decisions with the long-term objective and detailed sectoral analysis with transparent representation of emissions drivers through a common accounting framework or ‘dashboard’. These principles are operationalized in the creation of deep decarbonization pathways (DDPs), which involve technically detailed, sector-by-sector maps of each country’s decarbonization transition, backcasting feasible pathways from 2050 end points. This article shows how the sixteen DDPP country teams, covering 74% of global energy system emissions, used this method to collectively restrain emissions to a level consistent with the 2 °C target while maintaining development aspirations and reflecting national circumstances, mainly through efficiency, decarbonization of energy carriers (e.g. electricity, hydrogen, biofuels and synthetic gas) and switching to these carriers. The cross-cutting analysis of country scenarios reveals important enabling conditions for the transformation, pertaining to technology research and development, investment, trade and global and national policies.

Policy relevance

In the nation-focused global climate policy framework codified in the Paris Agreement, the purpose of the DDPP and DDPs is to provide a common method by which global and national governments, business, civil society and researchers in each country can communicate, compare and debate differing concrete visions for deep decarbonization in order to underpin the necessary societal and political consensus to design and implement short-term policy packages that are consistent with long-term global decarbonization.  相似文献   
37.
Discussions of East Asian developmental states and Asian values discourse have been deformed by national-territorial frameworks that limit scholars' ability to highlight transnational phenomena. Such limits can be overcome by adopting a “Pacificist” perspective, one that highlights the transnational collaborative efforts of Pacific ruling class members, from both Asia and the United States. Such a Pacificist approach has the virtue of highlighting phenomena of transnational class formation that help account for the emergence of both developmental states in East Asia and Asian values discourse, and it also suggested the importance of attending to other kinds of emerging actors in Asian development politics, such as labor and democracy movements.  相似文献   
38.
Steelmaking-coal waste rock placed in mountain catchments in the Elk Valley, British Columbia, Canada, drain constituents of interest (CIs) to surface water downgradient of the waste rock dumps. The role of groundwater in transporting CIs in the headwaters of mountain catchments is not well understood. This study characterizes the physical hydrogeology of a portion of a 10-km2 headwater catchment (West Line Creek) downgradient of a 2.7-km2 waste rock dump placed over a natural headwater valley-bottom groundwater system. The study site was instrumented with 13 monitoring wells. Drill core samples were collected to determine subsurface lithology and geotechnical properties. The groundwater system was characterized using field testing and water-level monitoring. The valley-bottom sediments were composed of unconsolidated glacial and meltwater successions (<64 m thick) deposited as a series of cut and fill structures overlying shale bedrock. An unconfined basal alluvial aquifer located above fractured bedrock was identified as the primary conduit for groundwater flow toward Line Creek (650 m from the toe of the dump). Discharge through the basal alluvial aquifer was estimated using the geometric mean hydraulic conductivity (±1 standard deviation). These calculations suggest groundwater discharge could account for approximately 15% (ranging from 2 to 60%) of the total water discharged from the watershed. The residence time from the base of the waste rock dump to Line Creek was estimated at <3 years. The groundwater system was defined as a snowmelt (i.e., nival) regime dominated by direct recharge (percolation of precipitation) across the catchment.  相似文献   
39.
Given its geological and climatic conditions and its rugged orography, Asturias is one of the most landslide prone areas in the North of Spain. Most of the landslides occur during intense rainfall episodes. Thus, precipitation is considered the main triggering factor in the study area, reaching average annual values of 960 mm. Two main precipitation patterns are frequent: (i) long-lasting periods of moderate rainfall during autumn and winter and (ii) heavy short rainfall episodes during spring and early summer. In the present work, soil moisture conditions in the locations of 84 landslides are analysed during two rainfall episodes, which represent the most common precipitation patterns: October–November 2008 and June 2010. Empirical data allowed the definition of available water capacity percentages of 99–100% as critical soil moisture conditions for the landslide triggering. Intensity-duration rainfall thresholds were calculated for each episode, considering the periods with sustained high soil moisture levels before the occurrence of each analysed landslide event. For this purpose, data from daily water balance models and weather stations were used. An inverse relationship between the duration of the precipitation and its intensity, consistent with published intensity-duration thresholds, was observed, showing relevant seasonal differences.  相似文献   
40.
On the precision and accuracy of IGS orbits   总被引:10,自引:6,他引:4  
In order to explore the precision and accuracy of International GNSS Service (IGS) orbits, we difference geocentric satellite positions midway between successive daily Final orbits for the period starting 5 November 2006, when the IGS switched its method of antenna calibration, through 31 December 2007. This yields a time series of orbit repeatabilities analogous to the classical geodetic test for position determinations. If we compare our average positional discontinuities to the official IGS accuracy codes, root-sum-squared (RSS) for each pair of days, we find the discontinuities are not well correlated with the predicted performance values. If instead the IGS weighted root-mean-square (WRMS) values from the Final combination long-arc analyses are taken as the measure of IGS accuracy, we find the position differences and long-arc values are correlated, but the long-arc values are exaggerated, particularly around eclipses, despite the fact that our day-boundary position differences apply to a single epoch each day and the long-arc analyses consider variations over a week. Our method is not well suited to probe the extent to which systematic effects dominate over random orbit errors, as indicated by satellite laser ranging residuals, but eclipsing satellites often display the most problematic behavior. A better metric than the current IGS orbit accuracy codes would probably be one based on the orbit discontinuities between successive days.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号