首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4413篇
  免费   1057篇
  国内免费   36篇
测绘学   85篇
大气科学   103篇
地球物理   2272篇
地质学   1805篇
海洋学   275篇
天文学   635篇
综合类   6篇
自然地理   325篇
  2021年   55篇
  2020年   73篇
  2019年   212篇
  2018年   230篇
  2017年   311篇
  2016年   364篇
  2015年   370篇
  2014年   396篇
  2013年   487篇
  2012年   329篇
  2011年   320篇
  2010年   303篇
  2009年   230篇
  2008年   267篇
  2007年   183篇
  2006年   154篇
  2005年   164篇
  2004年   131篇
  2003年   150篇
  2002年   124篇
  2001年   112篇
  2000年   109篇
  1999年   37篇
  1998年   20篇
  1997年   16篇
  1996年   15篇
  1995年   18篇
  1994年   19篇
  1993年   8篇
  1992年   14篇
  1991年   24篇
  1990年   16篇
  1989年   13篇
  1988年   9篇
  1987年   16篇
  1986年   13篇
  1985年   13篇
  1984年   20篇
  1983年   20篇
  1982年   17篇
  1981年   13篇
  1980年   12篇
  1978年   11篇
  1977年   9篇
  1976年   7篇
  1975年   12篇
  1974年   7篇
  1973年   10篇
  1971年   5篇
  1970年   5篇
排序方式: 共有5506条查询结果,搜索用时 15 毫秒
31.
The degree of glacial modification in small catchments along the eastern Sierra Nevada, California, controls the timing and pattern of sediment flux to the adjacent fans. There is a close relationship between the depth of fan‐head incision and the pattern and degree of Late Pleistocene catchment erosion by valley glaciers; catchments with significant glacial activity are associated with deeply incised fan heads, whereas fans emerging from glacially unmodified catchments are unincised. We suggest that the depth of fan‐head incision is controlled by the potential for sediment storage during relatively dry ice‐free periods, which in turn is related to the downstream length of the glacially modified valley and creation of accommodation through valley floor slope lowering and glacial valley overdeepening and widening. Significant storage in glacially modified basins during ice‐free periods leads to sediment supply‐limited conditions at the fan head and causes deep incision. In contrast, a lack of sediment trapping allows quasi‐continuous sediment supply to the fan and prevents incision of the fan head. Sediment evacuation rates should thus show large variations in glacially modified basins, with major peaks during glacial and lows during interglacial or ice‐free periods, respectively. In contrast, sediment removal from glacially unmodified catchments in this type of setting should be free of this effect, and will be dominated instead by short‐term variations, modulated for example by changes in vegetation cover or storm frequency. This distinction may help improve our understanding of long‐term sediment yields as a measure of erosional efficiency. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
32.
Seagrasses are marine angiosperms that form extensive submarine meadows in the photic zone where carbonate producing biota dwell as epiphytes on the leaves or as infaunal forms, and act as prolific carbonate sediment factories. Because seagrasses have a low preservation potential and records of exceptionally well‐preserved and plant material from marine settings are rare, these palaeoenvironments are difficult to identify in the rock record. Consequently, sedimentological and palaeontological proxies are the main indicators of the presence of seagrass‐dominated ecosystems. This work investigates the skeletal assemblage of Modern (Maldivian and western Mediterranean) and fossil (Eocene; Apula and Oman carbonate platforms and Oligocene; Malta platform) seagrass examples to characterize the skeletal assemblage of modern and fossil seagrasses. Two main types of grains, calcareous algae and foraminifera, constitute around 50% of the bioclastic sediment in both tropical Maldivian and temperate Mediterranean scenarios. However, in the tropical setting they are represented by green algae (Halimeda), while in the Mediterranean they are represented by corallinacean red algae. In contrast, in the Eocene examples, the foraminifera are the most conspicuous group and the green algae are also abundant. The opposite occurs in the Maltese Chattian, which is dominated by coralline algae (mean 42%), although the foraminifera are still abundant. It is suggested to use the term foralgal to identify the seagrass skeletal assemblage. To discriminate between red algae and green algae dominance, the introduction of the prefixes ‘GA’ (green algae) and ‘RA’ (red algae) is proposed. The investigated examples provide evidence that the green algae–foralgal assemblage is typical of tropical, not excessively dense seagrass meadows, characterized by a well‐illuminated substrate to support the development and calcification of the Halimeda thallus. Contrarily, the red algae‐foralgal assemblage is typical of high density tropical to subtropical seagrass meadows which create very dense oligophotic conditions on the sea floor or in temperate settings where Halimeda cannot calcify.  相似文献   
33.
Microbial Diversity in Nankai Trough Sediments at a Depth of 3,843 m   总被引:6,自引:0,他引:6  
Dense populations of bivalves, primarily Calyptogena sp., were observed at cold seeps of the Nankai Trough. Bacterial input to the sediment was estimated through determination of phospholipid ester-linked fatty acid (PLFA) and DNA profiles. Results indicated a bacterial biomass of 109 cells (g dry wt)-1 while individual fatty acid profiles revealed a predominance of monounsaturated fatty acids, mainly 18:1 isomers. The presence of these fatty acids can be interpreted to reflect a response to low temperature and a predominance of psychrophilic bacteria. DNA fragments encoding bacterial ribosomal RNA small-subunit sequences (16S rDNA) were amplified by the polymerase chain reaction method using DNA extracted directly from the sediment samples. From the sequencing results, at least 19 kinds of bacterial 16S rDNAs related to mostly the Proteobacteria and a few gram-positive bacteria were identified. These results suggest that the bacterial community in the Nankai Trough sediments consists of mainly bacteria belonging to the Proteobacteria , , and subdivisions. Bacteria belonging to the and subdivisions, which are known to include epibiont and sulfate reducing bacteria, respectively, were mostly detected in the sediment obtained from inside the area of the Calyptogena community, and the -Proteobacteria may function to supply reduced sulfur to bacterial endosymbionts of Calyptogena.  相似文献   
34.
This paper presents a new way of selecting real input ground motions for seismic design and analysis of structures based on a comprehensive method for estimating the damage potential of ground motions, which takes into consideration of various ground motion parameters and structural seismic damage criteria in terms of strength, deformation, hysteretic energy and dual damage of Park & Ang damage index. The proposed comprehensive method fully involves the effects of the intensity, frequency content and duration of ground motions and the dynamic characteristics of structures. Then, the concept of the most unfavourable real seismic design ground motion is introduced. Based on the concept, the most unfavourable real seismic design ground motions for rock, stiff soil, medium soil and soft soil site conditions are selected in terms of three typical period ranges of structures. The selected real strong motion records are suitable for seismic analysis of important structures whose failure or collapse will be avoided at a higher level of confidence during the strong earthquake, as they can cause the greatest damage to structures and thereby result in the highest damage potential from an extended real ground motion database for a given site. In addition, this paper also presents the real input design ground motions with medium damage potential, which can be used for the seismic analysis of structures located at the area with low and moderate seismicity. The most unfavourable real seismic design ground motions are verified by analysing the seismic response of structures. It is concluded that the most unfavourable real seismic design ground motion approach can select the real ground motions that can result in the highest damage potential for a given structure and site condition, and the real ground motions can be mainly used for structures whose failure or collapse will be avoided at a higher level of confidence during the strong earthquake. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
35.
Discrimination diagrams have been developed that source Egyptian basaltic artefacts using whole‐rock major element geochemistry. These include K2O versus SiO2, TiO2 and P2O5 against MgO/Fe2O3t (total Fe as Fe2O3), and a discriminant analysis diagram using SiO2, Fe2O3t, CaO, and MnO. A complementary set of diagrams uses easily obtained trace element data (Nb/Y versus Zr/Nb; Zr [ppm] versus Rb/Sr; TiO2 [wt % volatile free] versus V; and Cr [ppm] versus Zr/Y) to determine the bedrock sources. These diagrams have been applied to seven First Dynasty basalt vessels (Abydos), two Fourth Dynasty basalt paving stones (Khufu's funerary temple, Giza), and two Fifth Dynasty paving stones (Sahure's complex, Abu Sir). They show that the bedrock source for all the artefacts was the Haddadin flow in northern Egypt. Multidimensional scaling and cluster analysis applied to the whole‐rock data (major elements and trace elements together) and previously published mineral fingerprinting studies confirm these results. Comparing mineral versus whole‐rock fingerprinting techniques, a major advantage of the former is the small sample size required (0.001 g compared to ≥ 0.1 g). Analytical costs are similar for both methods assuming that a comparison (bedrock) database can be assembled from the literature. For most archaeological problems, a whole‐rock bedrock database is more likely to exist than a mineral database, and whole‐rock analyses on artefacts will generally be easier to obtain than mineral analyses. Whole‐rock fingerprinting may be more sensitive than mineral‐based fingerprinting. Thus, if sample quantity is not an issue, whole‐rock analysis may have a slight cost, convenience, and technical advantage over mineral‐based methods. Our results also emphasize that the Egyptians cherished their Haddadin basalt flow and used it extensively and exclusively for manufacturing basalt vessels and paving stones for at least 600 years (∼3150 B.C. to 2500 B.C., approximate ages of the vessels and Abu Sir paving stones, respectively). © 2001 John Wiley & Sons, Inc.  相似文献   
36.
37.
Suspended matter in the surface waters of the eastern Gulf of Guinea was studied in relation to the prevailing oceanic currents and the sediment composition and source. A confused current system arises from the confluence of the Guinea Current and the South Equatorial Current in this area. Sediment-laden water is transported to the south of Fernando Póo into the Gulf in a south-westerly direction. The southeasterly flowing Guinea Current along the western edge of the Niger delta and the enormous sediment loads of the distributaries in this area contribute to a major lobe of suspended matter off the southwestern nose of the delta. Sediment concentration is inversely related to salinity in the northeastern Gulf. Sediment is also swept northwestward from the continental shelf of Gabon and the Congo Republic into the Gulf. Diatoms are the most abundant constituents with lesser amounts of organic aggregates and two varieties of fecal pellets.  相似文献   
38.
39.
The Tarim Basin in western China formed the easternmost margin of a shallow epicontinental sea that extended across Eurasia and was well connected to the western Tethys during the Paleogene. Climate modelling studies suggest that the westward retreat of this sea from Central Asia may have been as important as the Tibetan Plateau uplift in forcing aridification and monsoon intensification in the Asian continental interior due to the redistribution of the land‐sea thermal contrast. However, testing of this hypothesis is hindered by poor constraints on the timing and precise palaeogeographic dynamics of the retreat. Here, we present an improved integrated bio‐ and magnetostratigraphic chronological framework of the previously studied marine to continental transition in the southwest Tarim Basin along the Pamir and West Kunlun Shan, allowing us to better constrain its timing, cause and palaeoenvironmental impact. The sea retreat is assigned a latest Lutetian–earliest Bartonian age (ca. 41 Ma; correlation of the last marine sediments to calcareous nannofossil Zone CP14 and correlation of the first continental red beds to the base of magnetochron C18r). Higher up in the continental deposits, a major hiatus includes the Eocene–Oligocene transition (ca. 34 Ma). This suggests the Tarim Basin was hydrologically connected to the Tethyan marine Realm until at least the earliest Oligocene and had not yet been closed by uplift of the Pamir–Kunlun orogenic system. The westward sea retreat at ca. 41 Ma and the disconformity at the Eocene–Oligocene transition are both time‐equivalent with reported Asian aridification steps, suggesting that, consistent with climate modelling results, the sea acted as an important moisture source for the Asian continental interior.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号