The West Siberian Basin (WSB) records a detailed history of Permo-Triassic rifting, extension and volcanism, followed by Mesozoic and Cenozoic sedimentation in a thermally subsiding basin. Sedimentary deposits of Permian age are absent from much of the basin, suggesting that large areas of the nascent basin were elevated and exposed at that time. Industrial seismic and well log data from the basin have enabled extension and subsidence modelling of parts of the basin. Crustal extension (β) factors are calculated to be in excess of 1.6 in the northern part of the basin across the deep Urengoy graben. 1-D backstripping of the Triassic to Cenozoic sedimentary sequences in this region indicates a period of delayed subsidence during the early Mesozoic. The combination of elevation, rifting and volcanism is consistent with sublithospheric support, such as a hot mantle plume.
This interpretation accords with the geochemical data for basalts from the Siberian Traps and the West Siberian Basin, which are considered to be part of the same large igneous province. Whilst early suites from Noril'sk indicate moderate pressures of melting (mostly within the garnet stability field), later suites (and those from the West Siberian Basin) indicate shallow average depths of melting. The main region of magma production was therefore beneath the relatively thin (ca. 50–100 km) lithosphere of the basin, and not the craton on which the present-day exposure of the Traps occurs. The indicated uplift, widespread occurrence of basalts, and short duration of the volcanic province as a whole are entirely consistent with published models involving a mantle plume. The main argument against the plume model, namely lack of any associated uplift, appears to be untenable. 相似文献
Knowledge of the permeability structure of fault‐bearing reservoir rocks is fundamental for developing robust hydrocarbon exploration and fluid monitoring strategies. Studies often describe the permeability structure of low porosity host rocks that have experienced simple tectonic histories, while investigations of the influence of faults with multiple‐slip histories on the permeability structure of porous clastic rocks are limited. We present results from an integrated petrophysical, microstructural, and mineralogical investigation of the Eumeralla Formation (a tight volcanogenic sandstone) within the hanging wall of the Castle Cove Fault which strikes 30 km NE–SW in the Otway Basin, southeast Australia. This late Jurassic to Cenozoic‐age basin has experienced multiple phases of extension and compression. Core plugs and thin sections oriented relative to the fault plane were sampled from the hanging wall at distances of up to 225 m from the Castle Cove Fault plane. As the fault plane is approached, connected porosities increase by ca. 10% (17% at 225 m to 24% at 0.5 m) and permeabilities increase by two orders of magnitude (from 0.04 mD at 225 m to 1.26 mD at 0.5 m). Backscattered Scanning Electron Microscope analysis shows that microstructural changes due to faulting have enhanced the micrometre‐scale permeability structure of the Eumeralla Formation. These microstructural changes have been attributed to the formation of microfractures and destruction of original pore‐lining chlorite morphology as a result of fault deformation. Complex deformation, that is, formation of macrofractures, variably oriented microfractures, and a hanging wall anticline, associated with normal faulting and subsequent reverse faulting, has significantly influenced the off‐fault fluid flow properties of the protolith. However, despite enhancement of the host rock permeability structure, the Eumeralla Formation at Castle Cove is still considered a tight sandstone. Our study shows that high‐resolution integrated analyses of the host rock are critical for describing the micrometre‐scale permeability structure of reservoir rocks with high porosities, low permeabilities, and abundant clays that have experienced complex deformation. 相似文献
We present C18O observations of the pre-stellar core L1689B, in the J =3→2 and 2→1 rotational transitions, taken at the James Clerk Maxwell Telescope in Hawaii. We use a λ -iteration radiative transfer code to model the data. We adopt a similar form of radial density profile to that which we have found in all pre-stellar cores, with a 'flat' inner profile, steepening towards the edge, but we make the gradient of the 'flat' region a free parameter. We find that the core is close to virial equilibrium, but there is tentative evidence for core contraction. We allow the temperature to vary with a power-law form and find that we can consistently fit all of the CO data with an inverse temperature gradient that is warmer at the edge than at the centre. However, when we combine the CO data with the previously published millimetre data we fail to find a simultaneous fit to both data sets without additionally allowing the CO abundance to decrease towards the centre. This effect has been observed qualitatively many times before, as the CO freezes out on to the dust grains at high densities, but we quantify the effect. Hence we show that the combination of millimetre/submillimetre continuum and spectral line data is a very powerful method of constraining the physical parameters of cores on the verge of forming stars. 相似文献
Here we present observations of the hydrography of the Patagonian Shelf, shelf break and offshore waters, with reference to the environmental conditions present during the period of peak coccolithophore abundance. Analysis of a hydrographic dataset collected in December 2008 (austral spring/summer), as part of the Coccolithophores of the Patagonian Shelf (COPAS) research cruise, identified 5 distinct surface water masses in the region between 37°S and 55°S. These water masses, identified through salinity gradients, displayed varying mixed layer depths, macronutrient inventories and chlorophyll-a fluorescence. Subantarctic Shelf Water (SSW), located to the north of the Falkland Islands and extending north along the shelf break, was also host to a large coccolithophore bloom. The similarities between the distribution of calcite, as seen in remote sensing data, and SSW indicate that the coccolithophore bloom encountered conditions conducive to bloom development within this water mass. Analysis of chemical and environmental data also collected during the COPAS cruise revealed that many of the commonly cited conditions for coccolithophore bloom development were present within SSW (e.g. low N:P ratio, high N:Si ratio, shallow mixed layer depth). In the other water masses present on the Patagonian Shelf greater variability in these same parameters may explain the more diffuse concentration of calcite, and the smaller size of possible coccolithophore blooms. The distribution of SSW is strongly influenced by the latitudinal variation in shelf break frontal width, which varies from 20 to 200 km, and consequently strong hydrographic controls underlie the position of the coccolithophore bloom during austral summer. 相似文献
The Herschel SPIRE Fourier transform spectrometer (FTS) performs spectral imaging in the 447–1546 GHz band. It can observe in three spatial sampling modes: sparse mode, with a single pointing on sky, or intermediate or full modes with 1 and 1/2 beam spacing, respectively. In this paper, we investigate the uncertainty and repeatability for fully sampled FTS mapping observations. The repeatability is characterised using nine observations of the Orion Bar. Metrics are derived based on the ratio of the measured intensity in each observation compared to that in the combined spectral cube from all observations. The mean relative deviation is determined to be within 2 %, and the pixel-by-pixel scatter is ~ 7 %. The scatter increases towards the edges of the maps. The uncertainty in the frequency scale is also studied, and the spread in the line centre velocity across the maps is found to be ~ 15 km s ? 1. Other causes of uncertainty are also discussed including the effect of pointing and the additive uncertainty in the continuum. 相似文献
The Fourier Transform Spectrometer (FTS) of the Spectral and Photometric Imaging REceiver (SPIRE) on board the ESA Herschel Space Observatory has two detector setting modes: (a) a nominal mode, which is optimized for observing moderately bright to faint astronomical targets, and (b) a bright-source mode recommended for sources significantly brighter than 500 Jy, within the SPIRE FTS bandwidth of 446.7–1544 GHz (or 194–671 microns in wavelength), which employs a reduced detector responsivity and out-of-phase analog signal amplifier/demodulator. We address in detail the calibration issues unique to the bright-source mode, describe the integration of the bright-mode data processing into the existing pipeline for the nominal mode, and show that the flux calibration accuracy of the bright-source mode is generally within 2 % of that of the nominal mode, and that the bright-source mode is 3 to 4 times less sensitive than the nominal mode. 相似文献
AbstractThis paper summarises current knowledge on metamorphism within the entire New England Orogen (NEO) of eastern Australia. Rocks recording metamorphic assemblages characteristic of each of the three metamorphic facies series (high, medium and low P/T) have been identified within the orogen. These include high P/T blueschists and eclogites, mid P/T orogenic metamorphism and low P/T contact aureoles and sub-regional high-temperature–low-pressure (HTLP) metamorphism (regional aureoles). Metamorphism is described as it relates to six tectonic phases of development of the NEO that together comprise two major cycles of compression–extension. Medium–high-grade contact metamorphism spans all six tectonic phases while low-grade burial and/or orogenic metamorphism has been identified for four of the six phases. In contrast, exposure of high P/T eclogites and blueschists, and generation of sub-regional low P/T metamorphism is restricted to extensional phases of the orogen. Hallmarks of the orogen are two newly identified zones of HTLP metamorphism, the older of which extends for almost the entire length of the orogen.
KEY POINTS
The orogen is dominated by low-temperature rocks while high-temperature amphibolite to granulite facies rocks are restricted to small exposures in HTLP complexes and contact aureoles.
Blueschist metamorphism falls into two categories; that associated with subduction during the Currabubula-Connors continental arc phase occurring at depths of ~13–30?km; and the other of Cambrian–Ordovician age, exposed within a serpentinite melange and associated with blocks of eclogite. The eclogite, initially from depths of ~75–90?km, appears to have been entrained in the deep crust for an extended period of geological time.
A comprehensive review of contact metamorphism in the orogen is lacking and as studies on low-grade metamorphism are more extensive in the southern part of the orogen than the north, this highlights a second research gap.