首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   359篇
  免费   25篇
  国内免费   5篇
测绘学   9篇
大气科学   28篇
地球物理   87篇
地质学   123篇
海洋学   39篇
天文学   47篇
自然地理   56篇
  2023年   3篇
  2022年   2篇
  2021年   5篇
  2020年   20篇
  2019年   13篇
  2018年   16篇
  2017年   19篇
  2016年   20篇
  2015年   16篇
  2014年   21篇
  2013年   28篇
  2012年   20篇
  2011年   23篇
  2010年   18篇
  2009年   19篇
  2008年   12篇
  2007年   15篇
  2006年   15篇
  2005年   10篇
  2004年   13篇
  2003年   13篇
  2002年   8篇
  2001年   9篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   5篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   4篇
  1984年   3篇
  1981年   3篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
  1974年   4篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1958年   1篇
  1957年   1篇
排序方式: 共有389条查询结果,搜索用时 78 毫秒
21.
When formulating a hydrologic model, scientists rely on parameterizations of multiple processes based on field data, but literature review suggests that more frequently people select parameterizations that were included in pre-existing models rather than re-evaluating the underlying field experiments. Problems arise when limited field data exist, when “trusted” approaches do not get reevaluated, and when sensitivities fundamentally change in different environments. The physics and dynamics of snow interception by conifers is just such a case, and it is critical to simulation of the water budget and surface albedo. The most commonly used interception parameterization is based on data from four trees from one site, but results from this field study are not directly transferable to locations with relatively warmer winters, where the dominant processes differ dramatically. Here, we combine a literature review with model experiments to demonstrate needed improvements. Our results show that the choice of model form and parameters can vary the fraction of snow lost through interception by as much as 30%. In most simulations, the warming of mean winter temperatures from −7 to 0°C reduces the modelled fraction of snow under the canopy compared to the open, but the magnitude of simulated decrease varies from about 10% to 40%. The range of results is even larger when considering models that neglect the melting of in-canopy snow in higher-humidity environments where canopy sublimation plays less of a role. Thus, we recommend that all models represent canopy snowmelt and include representation of increased loading due to increased adhesion and cohesion when temperatures rise from −3 to 0°C. In addition to model improvements, field experiments across climates and forest types are needed to investigate how to best model the combination of dynamically changing forest cover and snow cover to better understand and predict changes to albedo and water supplies.  相似文献   
22.
23.
The early diagenetic environment of intertidal sandy sediments (sands) and muddy sediments (muds) is described and compared from two cores taken from an unpolluted part of the Manukau Harbour, New Zealand. Extraction techniques characterized the form of the trace elements (Fe, Mn, S, C, Pb, Zn, Cu) at different depths in the sediment. Dissolved forms of Fe, Mn, and S were measured in interstitial water. Nonresidual metal concentrations, humic acid, FeS, and FeS2 are an order of magnitude higher in the muds than in the sands because of dilution by unreactive sand particles. Muds contain a larger proportion of metals in the mobile fractions; exchangeable (Mn), carbonate (Mn, Fe, Zn), and easily-reducible oxide (Fe, Mn, Zn, Pb). This is due to greater surface area (for Mn adsorption); the favorable conditions for MnCO3, FeCO3, and FeS precipitation; and higher concentrations of easily reducible iron oxide and humic acid. Therefore, compared to the sands, muds are more important as reservoirs for toxic metals, both in terms of quantity and availability. At either site there was very little difference between the forms of Zn, Pb or Cu identified by sequential extraction as sediments changed from oxic to anoxic conditions. One reason for this is that the amounts and proportions of some of the important components that bind metals, viz., amorphous iron hydrous oxides, humic acids, and FeS2, do not change much. Other components that do change with redox conditions, for example, manganese phases and FeS, are only minor components of the sediment. Redox conditions, then, have relatively little effect on trace-metal partitioning in the sediment matrix of these unpolluted sediments.  相似文献   
24.
Coral reef degradation resulting from nutrient enrichment of coastal waters is of increasing global concern. Although effects of nutrients on coral reef organisms have been demonstrated in the laboratory, there is little direct evidence of nutrient effects on coral reef biota in situ. The ENCORE experiment investigated responses of coral reef organisms and processes to controlled additions of dissolved inorganic nitrogen (N) and/or phosphorus (P) on an offshore reef (One Tree Island) at the southern end of the Great Barrier Reef, Australia. A multi-disciplinary team assessed a variety of factors focusing on nutrient dynamics and biotic responses. A controlled and replicated experiment was conducted over two years using twelve small patch reefs ponded at low tide by a coral rim. Treatments included three control reefs (no nutrient addition) and three + N reefs (NH4Cl added), three + P reefs (KH2PO4 added), and three + N + P reefs. Nutrients were added as pulses at each low tide (ca twice per day) by remotely operated units. There were two phases of nutrient additions. During the initial, low-loading phase of the experiment nutrient pulses (mean dose = 11.5 microM NH4+; 2.3 microM PO4(-3)) rapidly declined, reaching near-background levels (mean = 0.9 microM NH4+; 0.5 microM PO4(-3)) within 2-3 h. A variety of biotic processes, assessed over a year during this initial nutrient loading phase, were not significantly affected, with the exception of coral reproduction, which was affected in all nutrient treatments. In Acropora longicyathus and A. aspera, fewer successfully developed embryos were formed, and in A. longicyathus fertilization rates and lipid levels decreased. In the second, high-loading, phase of ENCORE an increased nutrient dosage (mean dose = 36.2 microM NH4+; 5.1 microM PO4(-3)) declining to means of 11.3 microM NH4+ and 2.4 microM PO4(-3) at the end of low tide) was used for a further year, and a variety of significant biotic responses occurred. Encrusting algae incorporated virtually none of the added nutrients. Organisms containing endosymbiotic zooxanthellae (corals and giant clams) assimilated dissolved nutrients rapidly and were responsive to added nutrients. Coral mortality, not detected during the initial low-loading phase, became evident with increased nutrient dosage, particularly in Pocillopora damicornis. Nitrogen additions stunted coral growth, and phosphorus additions had a variable effect. Coral calcification rate and linear extension increased in the presence of added phosphorus but skeletal density was reduced, making corals more susceptible to breakage. Settlement of all coral larvae was reduced in nitrogen treatments, yet settlement of larvae from brooded species was enhanced in phosphorus treatments. Recruitment of stomatopods, benthic crustaceans living in coral rubble, was reduced in nitrogen and nitrogen plus phosphorus treatments. Grazing rates and reproductive effort of various fish species were not affected by the nutrient treatments. Microbial nitrogen transformations in sediments were responsive to nutrient loading with nitrogen fixation significantly increased in phosphorus treatments and denitrification increased in all treatments to which nitrogen had been added. Rates of bioerosion and grazing showed no significant effects of added nutrients. ENCORE has shown that reef organisms and processes investigated in situ were impacted by elevated nutrients. Impacts were dependent on dose level, whether nitrogen and/or phosphorus were elevated and were often species-specific. The impacts were generally sub-lethal and subtle and the treated reefs at the end of the experiment were visually similar to control reefs. Rapid nutrient uptake indicates that nutrient concentrations alone are not adequate to assess nutrient condition of reefs. Sensitive and quantifiable biological indicators need to be developed for coral reef ecosystems. The potential bioindicators identified in ENCORE should be tested in future research on coral reef/nutrient interactions. Synergistic and cumulative effects of elevated nutrients and other environmental parameters, comparative studies of intact vs. disturbed reefs, offshore vs. inshore reefs, or the ability of a nutrient-stressed reef to respond to natural disturbances require elucidation. An expanded understanding of coral reef responses to anthropogenic impacts is necessary, particularly regarding the subtle, sub-lethal effects detected in the ENCORE studies.  相似文献   
25.
During August-September 1993, a joint Russian-United States expedition to the Bering and Chukchi Seas took place. Surface water samples were collected from 21 sites and separated into dissolved (duplicates) and suspended solids; 19 sediment and 6 air samples were also collected. These samples were analysed for 19 organochlorine pesticides, 11 chlorobenzenes and 113 PCB congeners. The report provides data on selected compounds which occured in > or = 75% of the water samples. Highest water concentrations were observed for HCH in open waters north and south of the Bering Strait, both regions being similar (alpha-HCH; 2.2 ng/L and lindane: 0.35 ng/L). Air levels observed were also constant (alpha-HCH; 0.041 ng/m3, lindane: 0.0093 ng/m3). Suspended solids and air particulares contributed little to the concentrations in their respective media, an observation common to all analytes except for the PCBs and the DDT residues. The sum of PCB concentrations in water were higher in the Bering Sea area compared to the Chukchi Sea (1.0 vrs 0.67 ng/L) and lower for air (0.46 vrs 0.23 ng/m3). Sum of DDT in water was higher in the Bering Sea than in the Chukchi Sea (0.23 vrs 0.15 ng/L) while in sediments and air, the Bering Sea concentrations were lower (0.95 vrs 1.6 ng/g and 36 vrs 56 pg/m3, respectively). Other organochlorine compounds for which data are presented include: pp'-DDE, pp'-DDT, dieldrin, HCB, 3 chlorobenzenes and 3 PCB congeners. Fluxes of all these chemicals through the Berin Strait are estimated; they ranged from 57 t/a (alpha-HCH) through 26 t/a (for sum of PCBs) to 0.2 t/a (pp'-DDE, dieldrin and 1,2,3-trichlorobenzene). Fugacity ratios for the HCHs and PCBs indicate the alpha-HCH is degassing in both the Bering and Chukchi Seas and that the gamma-isomer is degassing in the Bering Sea and is close to equilibrium (weakly absorbing) in the Chuchi Sea; the sum of PCBs are strongly absorbing in both areas.  相似文献   
26.
Cartesian coordinates are used to solve the nonlinear shallow-water equations on the sphere. The two-dimensional equations, in spherical coordinates, are first embedded in a three-dimensional system in a manner that preserves solutions of the two-dimensional system. That is, solutions of the three-dimensional system, with appropriate initial conditions, also solve the two-dimensional system on the surface of the sphere. The higher dimensional system is then transformed to Cartesian coordinates. Computations are limited to the surface of the sphere by projecting the equations, gradients, and solution onto the surface. The projected gradients are approximated by a weighted sum of function values on a neighboring stencil. The weights are determined by collocation using the spherical harmonics in trivariate polynomial form. That is, the weights are computed from the requirement that the projected gradients are near exact for a small set of spherical harmonics. The method is applicable to any distribution of points and two test cases are implemented on an icosahedral geodesic grid. The method is both vectorizable and parallelizable.  相似文献   
27.
Despite the long history of the continuum equation approach in hydrology, it is not a necessary approach to the formulation of a physically based representation of hillslope hydrology. The Multiple Interacting Pathways (MIPs) model is a discrete realization that allows hillslope response and transport to be simultaneously explored in a way that reflects the potential occurrence of preferential flows and lengths of pathways. The MIPs model uses random particle tracking methods to represent the flow of water within the subsurface alongside velocity distributions that acknowledge preferential flows and transition probability matrices, which control flow pathways. An initial realization of this model is presented here in application to a tracer experiment carried out in Gårdsjön, Sweden. The model is used as an exploratory tool, testing several hypotheses in relation to this experiment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
28.
Deep-water corals form unique ecosystems, yet very little is known about factors that regulate their distribution and growth. The abundance and size of two deep-water gorgonian coral species, Paragorgia arborea and Primnoa resedaeformis, and their relationship with depth and substratum cover, were investigated at Northeast Channel, off Nova Scotia, in July 2006. This is the first study to measure abundance and size of these two coral species at depths >500 m in the Canadian Atlantic region. A total of 5 transects between 500 and 1000 m depth were examined using video collected by the remotely operated vehicle ROPOS. Abundance of both species was patchy, but higher at these deeper depths than at <500 m. Abundance generally declined with depth, and was moderately correlated with cover of hard substratum (cobble, boulder, bedrock). These relationships were stronger and less variable for P. resedaeformis than for P. arborea, suggesting that factors such as topographic relief may play an additional role in regulating distributions of P. arborea. Maximum colony height was 125 and 240 cm for P. resedaeformis and P. arborea, respectively, and much greater than recorded for depths <500 m. Overall, colony height and depth relationships were strong for both species, but variable among transects. P. resedaeformis showed a negative relationship with depth, while the opposite was observed for P. arborea, suggesting that the two species are affected differently by factors that vary with depth (e.g. temperature, fishing disturbance). Relationships between colony size and size of attachment stone were stronger for P. arborea, especially for overturned colonies, than for P. resedaeformis, suggesting that availability of suitably coarse substrate may be more important for the long-term persistence of P. arborea colonies.  相似文献   
29.
30.
Williamson  Daniel  Blaker  Adam T.  Hampton  Charlotte  Salter  James 《Climate Dynamics》2015,45(5-6):1299-1324
Climate Dynamics - We describe the method of history matching, a method currently used to help quantify parametric uncertainty in climate models, and argue for its use in identifying and removing...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号