首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1047篇
  免费   37篇
  国内免费   7篇
测绘学   12篇
大气科学   76篇
地球物理   236篇
地质学   299篇
海洋学   108篇
天文学   257篇
自然地理   103篇
  2023年   4篇
  2021年   6篇
  2020年   27篇
  2019年   19篇
  2018年   19篇
  2017年   24篇
  2016年   28篇
  2015年   23篇
  2014年   27篇
  2013年   59篇
  2012年   37篇
  2011年   38篇
  2010年   48篇
  2009年   64篇
  2008年   37篇
  2007年   50篇
  2006年   51篇
  2005年   34篇
  2004年   54篇
  2003年   39篇
  2002年   30篇
  2001年   31篇
  2000年   26篇
  1999年   19篇
  1998年   25篇
  1997年   19篇
  1996年   12篇
  1995年   11篇
  1993年   11篇
  1992年   6篇
  1991年   4篇
  1990年   6篇
  1989年   14篇
  1988年   4篇
  1987年   13篇
  1986年   7篇
  1985年   18篇
  1984年   6篇
  1983年   5篇
  1982年   9篇
  1981年   16篇
  1980年   8篇
  1979年   9篇
  1978年   5篇
  1977年   12篇
  1975年   8篇
  1974年   7篇
  1973年   9篇
  1972年   7篇
  1969年   4篇
排序方式: 共有1091条查询结果,搜索用时 15 毫秒
31.
Abstract The Joggins Formation was deposited in the Cumberland Basin, which experienced rapid mid‐Carboniferous subsidence on bounding faults. A 600 m measured section of coastal and alluvial plain strata comprises cycles tens to hundreds of metres thick. The cycles commence with coal and fossiliferous limestone/siltstone intervals, interpreted as widespread flooding events. These intervals are overlain by coarsening‐upward successions capped by planar‐based sandstone mounds, up to 100 m in width that represent the progradation of small, river‐generated delta lobes into a standing body of open water developed during transgression. The overlying strata contain sand‐rich heterolithic packages, 1–8 m thick, that are associated with channel bodies 2–3 m thick and 10–50 m wide. Drifted plant debris, Calamites groves and erect lycopsid trees are preserved within these predominantly green‐grey heterolithic sediments, which were deposited on a coastal wetland or deltaic plain traversed by channel systems. The cycles conclude with red siltstones, containing calcareous nodules, that are interbedded with thin sandstones and associated with both single‐storey channel bodies (1–1·5 m thick and 2–3 m wide) and larger, multistorey channels (3–6 m thick) with incised margins. Numerous channel bodies at the same level suggest that multiple‐channel, anastomosed river systems were developed on a well‐drained floodplain. Many minor flooding surfaces divide the strata into parasequences with dominantly progradational and aggradational stacking patterns. Multistorey channel bodies are relatively thin, fine grained and modestly incised, and palaeosols are immature and cumulative. The abundance and prominence of flooding surfaces suggests that base‐level rise was enhanced, whereas the lack of evidence for abrupt basinward stepping of facies belts, coupled with the absence of strong fluvial incision and mature palaeosols, suggests that base‐level fall was suppressed. These architectural features are considered to reflect a tectonic architectural signature, in accordance with the high‐subsidence basinal setting. Evidence for restricted marine influence and variation in floral assemblages suggests modulation by eustatic and climatic effects, although their relative importance is uncertain.  相似文献   
32.
Oblique convergence since the Early Cenozoic between the northward-moving Australian plate, westward-moving Pacific plate and almost stationary Eurasian plate has created a world-ranking tectonic zone in the eastern Indonesia–New Guinea–Southwest Pacific region (Tonga–Sulawesi megashear) that is notorious for its complex mix of tectonic styles and terrane juxtapositions. Unlike an ancient analog—the Mesozoic–Cenozoic Cordillera of North America—palaeomagnetic constraints on terrane motions in the zone are few. To improve the framework of quantitative control on such motions and therefore our understanding of the development of the zone, results of a palaeomagnetic study in the Highlands region of Papua New Guinea (PNG), in the southern part of the New Guinea Orogen, are reported. The study yields new insights into terrane tectonics along the Australian craton's active northern margin and confirms the complexity of block rotations to be expected at the local scale in tectonically intricate zones. The study is based on more than 500 samples (21 localities) collected from an interior and an exterior zone of New Guinea's central cordillera. The two zones are separated by the Tahin and Stolle–Lagaip–Kaugel Fault zones and collectively represent the para-autochthonous northern margin of the Australian craton. Samples from the interior zone, which in the study area comprises a cratonic spur of uncertain—probably displaced—origin, come from Triassic to Miocene sediments and subordinate volcanics of the Kubor Anticline, Jimi Terrane, and Yaveufa Syncline (16 localities) in the central and eastern Highlands. Samples from the exterior zone, which represent a basement-involved, Pliocene foreland fold-and-thrust belt, come from Middle Eocene to Middle Miocene carbonates and clastics (five localities) in the southern Highlands of the Papuan Fold Belt. Results permit us to constrain the tectonic evolution of the two zones palaeomagnetically. Using mainly thermal demagnetization techniques, three main magnetic components have been identified in the collection: (1) a recent field overprint of both normal and reverse polarity; (2) a pervasive overprint of mainly normal polarity that originated during extensive Middle to Late Miocene intrusive activity in the central cordillera; and (3) a primary component which has been identified in only 7 of the 21 localities (5 of 11 stratigraphic units represented in the collection). All components show patterns of rotation that are consistent within the zones, but differ between them. In the interior zone (central and eastern Highlands), large-scale counterclockwise rotations of between 30°+ and 100°+ have been established throughout the Kubor Anticline and Jimi Terrane, with some clockwise rotation present in the southern part of the Yaveufa Syncline. In contrast, in the Mendi area of the exterior zone (southern Highlands), clockwise rotations of between 30°+ and 50°+ can be recognized. These contrasting rotation patterns across the Tahin and Stolle–Lagaip–Kaugel Fault zones indicate decoupling of the two tectonic zones, probably along basement-involved faults. The clockwise rotations in the southern Highlands of the Papuan Fold Belt are to be expected from its structural grain, and are probably governed by regional basement faults and transverse lineaments. In contrast, the pattern of counterclockwise rotations in the Kubor Anticline–Jimi Terrane cratonic spur of the central and eastern Highlands was unexpected. The pattern is interpreted to result from non-rigid rotation of continental terranes as they were transported westward across the northeastern margin of the Australian craton. This margin became reorganised after the Middle Miocene, when the steadily northward-advancing Australian craton impinged into the westward-moving Pacific plate/buffer-plate system. Transpressional reorganisation under the influence of the sinistral Tonga–Sulawesi megashear became enhanced with Mio-Pliocene docking, and subsequent southward overthrusting, of the Finisterre Terrane onto the northeastern margin of the Australian craton.  相似文献   
33.
Saturated and aromatic biomarker ratios continue to change systematically through the oil window and into the gas-condensate window to high vitrinite reflectances (Ro = 1.16%) in mature marine and lacustrine Mesozoic clastic samples from a South African basin. Two of the ratios reverse above Ro = 0.9%. These unusual maturation effects result from isolated periods of high rates of maturation increase. The basin cooled regionally after the break-up of Gondwana but high heating rates prevailed during the late Cretaceous-early Tertiary, as Africa moved across a hotspot, and again in the late Tertiary as a result of a possible hotspot and hydrothermal event.  相似文献   
34.
 Yucca Mountain, the proposed site for the high-level nuclear waste repository, is located just south of where the present water table begins a sharp rise in elevation. This large hydraulic gradient is a regional feature that extends for over 100 km. Yucca Mountain and its vicinity are underlain by faulted and fractured tuffs with hydraulic conductivities controlled by flow through the fractures. Close to and parallel with the region of large hydraulic gradient, and surrounding the core of the Timber Mountain Caldera, there is a 10- to 20-km-wide zone containing few faults and thus, most likely, few open fractures. Consequently, this zone should have a relatively low hydraulic conductivity, and this inference is supported by the available conductivity measurements in wells near the large hydraulic gradient. Also, slug injection tests indicate significantly higher pressures for fracture opening in wells located near the large hydraulic gradient compared to the opening pressures in wells further to the south, hence implying that lower extensional stresses prevail to the north with consequently fewer open fractures there. Analytical and numerical modeling shows that such a boundary between media of high and low conductivity can produce the observed, large hydraulic gradient, with the high conductivity medium having a lower elevation than the water table. Further, as fractures can close due to tectonic activity, the conductivity of the Yucca Mountain tuffs can be reduced to a value near that for the hydraulic barrier due to strain release by a moderate earthquake. Under these conditions, simulations show that the elevation of the steady-state water table could rise between 150 and 250 m at the repository site. This elevation rise is due to the projected shift in the location of the large hydraulic gradient to the south in response to a moderate earthquake, near magnitude 6, along one of the major normal faults adjacent to Yucca Mountain. As the proposed repository would only be 200–400 m above the present water table, this predicted rise in the water table indicates a potential hazard involving water intrusion. Received: 7 June 1996 / Accepted: 19 November 1996  相似文献   
35.
The CUTLASS Finland HF radar has been operated in conjunction with the EISCAT Tromsø RF ionospheric heater facility to examine a ULF wave characteristic of the development of a field line resonance (FLR) driven by a cavity mode caused by a magnetospheric impulse. When the heater is on, striating the ionosphere with field-aligned ionospheric electron density irregularities, a large enough radar target is generated to allow post-integration over only 1 second. When combined with 15 km range gates, this gives radar measurements of a naturally occurring ULF wave at a far better temporal and spatial resolution than has been achieved previously. The time-dependent signature of the ULF wave has been examined as it evolves from a large-scale cavity resonance, through a transient where the wave period was latitude-dependent and the oscillation had the characteristics of freely ringing field lines, and finally to a very narrow, small-scale local field line resonance. The resonance width of the FLR is only 60 km and this is compared with previous observations and theory. The FLR wave signature is strongly attenuated in the ground magnetometer data. The characterisation of the impulse driven FLR was only achieved very crudely with the ground magnetometer data and, in fact, an accurate determination of the properties of the cavity and field line resonant systems challenges the currently available limitations of ionospheric radar techniques. The combination of the latest ionospheric radars and facilities such as the Tromsø ionospheric heater can result in a powerful new tool for geophysical research.  相似文献   
36.
Simple and easily reproducible techniques have been used to construct two objective cyclone climatologies of the North Atlantic-European sector. The goal of this study is to increase understanding of cyclones with the potential to cause damage, in particular, those reaching Beaufort category 7 and above. The two climatologies constructed here span the period 1979–2000 and have been developed from reanalysis mean sea level pressure data from the ECMWF (European Centre for Medium Range Weather Forecasts) and NCEP (National Centres for Environmental Prediction). The ECMWF reanalysis data are only available for 15 years, and have been extended from 1994 using operational analyses. The major temporal and spatial characteristics of North Atlantic cyclones are examined and a comparison between the climatologies developed from the two data sets is carried out. The well-known cyclogenesis regions along the east coast of the United States and to the southeast of Greenland are replicated by both reanalyses, as is the characteristic southwest/northeast orientation of the dominant cyclone track across the Atlantic basin. However, only weak correlations are found between the time series of cyclone frequency produced from the two reanalyses, and this is particularly true for the lower intensity Beaufort Scale category 0–6 cyclones. This result, together with the large differences in the spatial distribution of cyclones over Greenland for Beaufort Scale 0–6 cyclones, indicates the NCEP reanalyses generates fewer systems than the ECMWF reanalyses. The overall conclusion is that the ECMWF mean sea level pressure data produce a more comprehensive climatology of North Atlantic cyclones at all scales.  相似文献   
37.
Why does time apparently fly one way, when the laws of physics are actually time-symmetrical? Paul Davies proposes a quantum solution, in the Whitrow Lecture 2004, given on 8 October 2004.  相似文献   
38.
39.
Algae is an informal term used to describe a broad group of simple organisms from the plant kingdom. The organisms included within this grouping are aquatic photosynthetic biota with an extensive range of life habits and forms. These organisms range from micron-sized unicellular forms to giant seaweeds and kelps, which can grow to several metres long. Both benthic and planktonic modes of life are known and display a wide variety of life cycles.  相似文献   
40.
Diagnosing the source of errors in snow models requires intensive observations, a flexible model framework to test competing hypotheses, and a methodology to systematically test the dominant snow processes. We present a novel process‐based approach to diagnose model errors through an example that focuses on snow accumulation processes (precipitation partitioning, new snow density, and snow compaction). Twelve years of meteorological and snow board measurements were used to identify the main source of model error on each snow accumulation day. Results show that modeled values of new snow density were outside observational uncertainties in 52% of days available for evaluation, while precipitation partitioning and compaction were in error 45% and 16% of the time, respectively. Precipitation partitioning errors mattered more for total winter accumulation during the anomalously warm winter of 2014–2015, when a higher fraction of precipitation fell within the temperature range where partition methods had the largest error. These results demonstrate how isolating individual model processes can identify the primary source(s) of model error, which helps prioritize future research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号