首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   9篇
  国内免费   3篇
测绘学   2篇
大气科学   18篇
地球物理   24篇
地质学   39篇
海洋学   2篇
天文学   5篇
自然地理   23篇
  2023年   3篇
  2021年   3篇
  2020年   5篇
  2019年   8篇
  2018年   5篇
  2017年   3篇
  2016年   4篇
  2015年   8篇
  2014年   6篇
  2013年   8篇
  2012年   9篇
  2011年   8篇
  2010年   3篇
  2009年   3篇
  2008年   8篇
  2007年   2篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有113条查询结果,搜索用时 31 毫秒
51.
As the highest part of the central Andean fold‐thrust belt, the Eastern Cordillera defines an orographic barrier dividing the Altiplano hinterland from the South American foreland. Although the Eastern Cordillera influences the climatic and geomorphic evolution of the central Andes, the interplay among tectonics, climate and erosion remains unclear. We investigate these relationships through analyses of the depositional systems, sediment provenance and 40Ar/39Ar geochronology of the upper Miocene Cangalli Formation exposed in the Tipuani‐Mapiri basin (15–16°S) along the boundary of the Eastern Cordillera and Interandean Zone in Bolivia. Results indicate that coarse‐grained nonmarine sediments accumulated in a wedge‐top basin upon a palaeotopographic surface deeply incised into deformed Palaeozoic rocks. Seven lithofacies and three lithofacies associations reflect deposition by high‐energy braided river systems, with stratigraphic relationships revealing significant (~500 m) palaeorelief. Palaeocurrents and compositional provenance data link sediment accumulation to pronounced late Miocene erosion of the deepest levels of the Eastern Cordillera. 40Ar/39Ar ages of interbedded tuffs suggest that sedimentation along the Eastern Cordillera–Interandean Zone boundary was ongoing by 9.2 Ma and continued until at least ~7.4 Ma. Limited deformation of subhorizontal basin fill, in comparison with folded and faulted rocks of the unconformably underlying Palaeozoic section, implies that the thrust front had advanced into the Subandean Zone by the 11–9 Ma onset of basin filling. Documented rapid exhumation of the Eastern Cordillera from ~11 Ma onward was decoupled from upper‐crustal shortening and coeval with sedimentation in the Tipuani‐Mapiri basin, suggesting climate change (enhanced precipitation) or lower crustal and mantle processes (stacking of basement thrust sheets or removal of mantle lithosphere) as possible controls on late Cenozoic erosion and wedge‐top accumulation. Regardless of the precise trigger, we propose that an abruptly increased supply of wedge‐top sediment produced an additional sedimentary load that helped promote late Miocene advance of the central Andean thrust front in the Subandean Zone.  相似文献   
52.
Widespread observations of ecohydrological separation are interpreted by suggesting that water flowing through highly conductive soil pores resists mixing with matrix storage over periods of days to months (i.e., two ‘water worlds’ exist). These interpretations imply that heterogeneous flow can produce ecohydrological separation in soils, yet little mechanistic evidence exists to explain this phenomenon. We quantified the separation between mobile water moving through preferential flow paths versus less mobile water remaining in the soil matrix after free-drainage to identify the amount of preferential flow necessary to maintain a two water world's scenario. Soil columns of varying macropore structure were subjected to simulated rainfall of increasing rainfall intensity (26 mm h−1, 60 mm h−1, and 110 mm h−1) whose stable isotope signatures oscillated around known baseline values. Prior to rainfall, soil matrix water δ2H nearly matched the known value used to initially wet the pore space whereas soil δ18O deviated from this value by up to 3.4‰, suggesting that soils may strongly fractionate 18O. All treatments had up to 100% mixing between rain and matrix water under the lowest (26 mm h−1) and medium (60 mm h−1) rainfall intensities. The highest rainfall intensity (110 mm h−1), however, reduced mixing of rain and matrix water for all treatments and produced significantly different preferential flow estimates between columns with intact soil structure compared to columns with reduced soil structure. Further, artificially limiting exchange between preferential flow paths and matrix water reduced bypass flow under the most intense rainfall. We show that (1) precipitation offset metrics such as lc-excess and d-excess may yield questionable interpretations when used to identify ecohydrological separation, (2) distinct domain separation may require extreme rainfall intensities and (3) domain exchange is an important component of macropore flow.  相似文献   
53.
Terminal ballistics of concrete is of extreme importance to the military and civil communities. Over the past few decades, ultra-high performance concrete (UHPC) has been developed for various applications in the design of protective structures because UHPC has an enhanced ballistic resistance over conventional strength concrete. Developing predictive numerical models of UHPC subjected to penetration is critical in understanding the material's enhanced performance. This study employs the advanced fundamental concrete (AFC) model, and it will run inside the reproducing kernel particle method (RKPM)-based code known as the nonlinear meshfree analysis program (NMAP). NMAP is advantageous for modeling impact and penetration problems that exhibit extreme deformation and material fragmentation. A comprehensive experimental study was conducted to characterize the UHPC. The investigation consisted of fracture toughness testing, the utilization of nondestructive microcomputed tomography analysis, and lastly projectile penetration shots on the UHPC targets. To improve the accuracy of the model, a new scaled damage evolution law (SDEL) is employed within the microcrack informed damage model. During the homogenized macroscopic calculation, the corresponding microscopic cell needs to be dimensionally equivalent to the mesh dimension when the partial differential equation becomes ill posed and strain softening ensues. To ensure arbitrary mesh geometry for which the homogenized stress-strain curves are derived, a size scaling law is incorporated into the homogenized tensile damage evolution law. This ensures energy-bridging equivalence of the microscopic cell to the homogenized medium irrespective of arbitrary mesh geometry. Results of numerical investigations will be compared with results of penetration experiments.  相似文献   
54.
Macrophytes are a critical component of lake ecosystems affecting nutrient and contaminant cycling, food web structure, and lake biodiversity. The long-term (decades to centuries) dynamics of macrophyte cover are, however, poorly understood and no quantitative estimates exist for pre-industrial (pre-1850) macrophyte cover in northeastern North America. Using a 215 lake dataset, we tested if surface sediment diatom assemblages significantly differed among lakes that have sparse (<10% cover; group 1), moderate (10–40% cover; group 2) or extensive (>40% cover; group 3) macrophyte cover. Analysis of similarity indicated that the diatom assemblages of these a priori groups of macrophyte cover were significantly different from one another (i.e., difference between: groups 1 and 3, R statistic = 0.31, P < 0.001; groups 1 and 2, R statistic = 0.049, P < 0.01; groups 3 and 2, R statistic = 0.112, P < 0.001). We then developed an inference model for macrophyte cover from lakes classified as sparse or extensive cover (145 lakes) based on the surface sediment diatom assemblages, and applied this model using the top-bottom paleolimnological approach (i.e., comparison of recent sediments to pre-disturbance sediments). We used the second axis of our correspondence analysis, which significantly divided sparse and extensive macrophyte cover sites, as the independent variable in a logistic regression to predict macrophyte cover as either sparse or extensive. Cross validation, using 48 randomly chosen sites that were excluded from model development, indicated that our model accurately predicts macrophyte cover 79% of the time (r 2 = 0.32, P < 0.001). When applied to the top and bottom sediment samples, our model predicted that 12.5% of natural lakes and 22.4% of reservoirs in the dataset have undergone a ≥30% change in macrophyte cover. For the sites with an inferred change in macrophyte cover, the majority of natural lakes (64.3%) increased in cover, while the majority of reservoirs (87.5%) decreased in macrophyte cover. This study demonstrates that surface sediment diatom assemblages from profundal zones differ in lakes based on their macrophyte cover and that diatoms are useful indicators for quantitatively reconstructing changes in macrophyte cover.  相似文献   
55.
The “overshoot scenario” is an emissions scenario in which CO2 concentration in the atmosphere temporarily exceeds some pre-defined, “dangerous” threshold (before being reduced to non-dangerous levels). Support for this idea comes from its potential to achieve a balance between the burdens of current and future generations in dealing with global warming. Before it can be considered a viable policy, the overshoot scenario needs to be examined in terms of its impacts on the global climate and the environment. In, particular, it must be determined if climate change cause by the overshoot scenario is reversible or not, since crossing that “dangerous” CO2 threshold could result in climate change from which we might not be able to recover. In this study, we quantify the change in several climatic and environmental variables under the overshoot scenario using a global climate model of intermediate complexity. Compared to earlier studies on the overshoot scenario, we have an explicit carbon cycle model that allows us to represent carbon-climate feedbacks and force the climate model more realistically with CO2 emissions rates rather than with prescribed atmospheric pCO2. Our standard CO2 emissions rate is calculated on the basis of historical atmospheric pCO2 data and the WRE S650 non-overshoot stabilization profile. It starts from the preindustrial year 1760, peaks in the year 2056, and ends in the year 2300. A variety of overshoot scenarios were constructed by increasing the amplitude of the control emissions peak but decreasing the peak duration so that the cumulative emissions remain essentially constant. Sensitivity simulations of various overshoot scenarios in our model show that many aspects of the global climate are largely reversible by year 2300. The significance of the reversibility, which takes roughly 200 years in our experiments, depends on the time horizon with which it is viewed or the number of future generations for whom equity is sought. At times when the overshoot scenario has emissions rates higher then the control scenario, the transient changes in atmospheric and oceanic temperatures and surface ocean pH can be significant, even for moderate overshoot scenarios that remain within IPCC SRES emissions scenarios. The large transient changes and the centennial timescale of climate reversibility suggest that the overshoot might not be the best mitigation approach, even if it technically follows the optimal economic path.  相似文献   
56.
Propane biosparging and bioaugmentation were applied to promote in situ biodegradation of 1,4‐dioxane at Site 24, Vandenberg Air Force Base (VAFB), CA. Laboratory microcosm and enrichment culture testing demonstrated that although native propanotrophs appeared abundant in the shallow water‐bearing unit of the aquifer (8 to 23 ft below ground surface [bgs]), they were difficult to be enriched from a deeper water‐bearing unit (82 to 90 feet bgs). Bioaugmentation with the propanotroph Rhodococcus ruber ENV425, however, supported 1,4‐dioxane biodegradation in microcosms constructed with samples from the deep aquifer. For field testing, a propane‐biosparging system consisting of a single sparging well and four performance monitoring wells was constructed in the deep aquifer. 1,4‐dioxane biodegradation began immediately after bioaugmentation with R. ruber ENV425 (36 L; 4 × 109 cells/mL), and apparent first‐order decay rates for 1,4‐dioxane ranged from 0.021 day?1 to 0.036 day?1. First‐order propane consumption rates increased from 0.01 to 0.05 min?1 during treatment. 1,4‐dioxane concentrations in the sparging well and two of the performance monitoring wells were reduced from as high as 1090 µg/L to <2 µg/L, while 1,4‐dioxane concentration was reduced from 135 µg/L to 7.3 µg/L in a more distal third monitoring well. No 1,4‐dioxane degradation was observed in the intermediate aquifer control well even though propane and oxygen were present. The demonstration showed that propane biosparging and bioaugmentation can be used for in situ treatment of 1,4‐dioxane to regulatory levels.  相似文献   
57.
Across many scientific domains, the ability to aggregate disparate datasets enables more meaningful global analyses. Within marine biology, the Census of Marine Life served as the catalyst for such a global data aggregation effort. Under the Census framework, the Ocean Biogeographic Information System was established to coordinate an unprecedented aggregation of global marine biogeography data. The OBIS data system now contains 31.3 million observations, freely accessible through a geospatial portal. The challenges of storing, querying, disseminating, and mapping a global data collection of this complexity and magnitude are significant. In the face of declining performance and expanding feature requests, a redevelopment of the OBIS data system was undertaken. Following an Open Source philosophy, the OBIS technology stack was rebuilt using PostgreSQL, PostGIS, GeoServer and OpenLayers. This approach has markedly improved the performance and online user experience while maintaining a standards‐compliant and interoperable framework. Due to the distributed nature of the project and increasing needs for storage, scalability and deployment flexibility, the entire hardware and software stack was built on a Cloud Computing environment. The flexibility of the platform, combined with the power of the application stack, enabled rapid re‐development of the OBIS infrastructure, and ensured complete standards‐compliance.  相似文献   
58.
Changing climate could affect the functioning of grassland ecosystems through variation in climate forcings and by altering the interactions of forcings with ecological processes. Both the short and long-term effects of changing forcings and ecosystem interactions are a critical part of future impacts to ecosystem ecology and hydrology. To explore these interactions and identify possible characteristics of climate change impacts to mesic grasslands, we employ a low-dimensional modeling framework to assess the IPCC A1B scenario projections for the Central Plains of the United States; forcings include increased precipitation variability, increased potential evaporation, and earlier growing season onset. These forcings are also evaluated by simulations of vegetation photosynthetic capacity to explore the seasonal characteristics of the vegetation carbon assimilation response for species at the Konza Prairie in North Central Kansas, USA. The climate change simulations show decreases in mean annual soil moisture and and carbon assimilation and increased variation in water and carbon fluxes during the growing season. Simulations of the vegetation response show increased variation at the species-level instead of at a larger class scale, with important heterogeneity in how individual species respond to climate forcings. Understanding the drivers and relationships behind these ecosystem responses is important for understanding the likely scale of climate change impacts and for exploring the mechanisms shaping growing season dynamics in grassland ecosystems.  相似文献   
59.
The particulate organic matter in < 63 µm surface sediments from the Mackenzie River and its main tributaries was studied using Rock-Eval pyrolysis and organic petrology. The organic matter in the sediments is dominated by refractory residual organic carbon (RC) of mainly terrigenous nature, as indicated by abundant inertinite, vitrinite, and type III kerogen. Sediments from the tributaries contained significantly more algal-derived organic matter than from the main channel of the river, highlighting the importance of low-energy system dynamics in the tributaries, which allows modest algal production, more accumulation, and better preservation of autochthonous organic matter. This is particularly true for tributaries fed by lacustrine systems, which showed the highest S1 and S2 fractions, and consequently higher total particulate organic carbon (POC) in the basin. Organic petrology of the sediment samples confirms abundant liptinitic materials (i.e., fat-rich structured algae, spores and pollen, cuticles, and resins). Forest fire and coal deposits are also confirmed to contribute to the basin. Assuming that suspended and fine surfacial sediments have a similar OC composition, the Mackenzie River is estimated to deliver a total POC flux of 1.1 Mt C/yr to its delta, of which 85% is residual carbon with liptinitic OC (S1 + S2) and S3 accounting for another 9% and 6%, respectively.  相似文献   
60.
Regional behaviour of the groundwater flow system in the Cochabamba Valley, Bolivia, is evaluated through the interpretation of tritium (3H) distributions in groundwater samples from wells and springs. In order to interpret groundwater 3H concentrations in Cochabamba Valley, where no historical record of 3H concentrations in rainfall exists, a reconstructed 3H precipitation record is developed. The record of 3H concentrations in precipitation is fairly extensive in the Amazon Basin and this record was extrapolated to the neighbouring Cochabamba Valley. Tritium concentrations in rainfall have been observed to increase under natural conditions with increasing latitude and with increasing distance from the ocean. By considering these trends, a linear relationship for increasing 3H concentration in precipitation is developed, based on data from the Amazon Basin, that realistically predicts regional 3H distributions from the northeast Brazilian coast to Cuzco, Peru. This 3H precipitation record is then extrapolated to the Cochabamba Valley and, after correction for radiogenic decay, is used to interpret trends in groundwater 3H concentrations within the valley.

The groundwater flow system in one of the principal alluvial fans, which serves as an important groundwater resource for the city, is studied in detail. Tritium concentrations drop from approximately 8–10 tritium units (TU) in the recharge area to concentrations below the detection limit of 0.8 TU further out in the valley. Groundwater velocities of approximately 0.3 to 0.9 m d−1 are estimated from distributions of groundwater 3H concentrations along the alluvial fan with the use of the reconstructed precipitation 3H record. Regional characteristics of the groundwater flow system are discussed with respect to future development and protection of the groundwater resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号