首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2615篇
  免费   129篇
  国内免费   8篇
测绘学   84篇
大气科学   190篇
地球物理   759篇
地质学   982篇
海洋学   222篇
天文学   315篇
综合类   18篇
自然地理   182篇
  2024年   5篇
  2023年   10篇
  2022年   25篇
  2021年   57篇
  2020年   55篇
  2019年   57篇
  2018年   302篇
  2017年   205篇
  2016年   169篇
  2015年   95篇
  2014年   113篇
  2013年   150篇
  2012年   75篇
  2011年   158篇
  2010年   138篇
  2009年   167篇
  2008年   118篇
  2007年   86篇
  2006年   98篇
  2005年   88篇
  2004年   76篇
  2003年   77篇
  2002年   53篇
  2001年   30篇
  2000年   35篇
  1999年   24篇
  1998年   33篇
  1997年   22篇
  1996年   29篇
  1995年   17篇
  1994年   18篇
  1993年   16篇
  1992年   17篇
  1991年   10篇
  1990年   13篇
  1989年   8篇
  1988年   9篇
  1987年   9篇
  1986年   10篇
  1985年   9篇
  1984年   5篇
  1983年   6篇
  1982年   3篇
  1981年   8篇
  1980年   4篇
  1979年   4篇
  1976年   3篇
  1970年   3篇
  1965年   4篇
  1950年   3篇
排序方式: 共有2752条查询结果,搜索用时 15 毫秒
21.
22.
Part I of this contribution (Gardés et al. in Contrib Mineral Petrol, 2010) reported time- and temperature-dependent experimental growth of polycrystalline forsterite-enstatite double layers between single crystals of periclase and quartz, and enstatite single layers between forsterite and quartz. Both double and single layers displayed growth rates decreasing with time and pronounced grain coarsening. Here, a model is presented for the growth of the layers that couples grain boundary diffusion and grain coarsening to interpret the drop of the growth rates. It results that the growth of the layers is such that (Δx)2 ∝ t 1−1/n , where Δx is the layer thickness and n the grain coarsening exponent, as experimentally observed. It is shown that component transport occurs mainly by grain boundary diffusion and that the contribution of volume diffusion is negligible. Assuming a value of 1 nm for the effective grain boundary width, the following Arrhenius laws for MgO grain boundary diffusion are derived: log D gb,0Fo (m2/s) = −2.71 ± 1.03 and E gbFo = 329 ± 30 kJ/mol in forsterite and log D gb,0En (m2/s) = 0.13 ± 1.31 and E gbEn = 417 ± 38 kJ/mol in enstatite. The different activation energies are responsible for the changes in the enstatite/forsterite thickness ratio with varying temperature. We show that significant biases are introduced if grain boundary diffusion-controlled rim growth is modelled assuming constant bulk diffusivities so that differences in activation energies of more than 100 kJ/mol may arise. It is thus important to consider grain coarsening when modelling layered reaction zones because they are usually polycrystalline and controlled by grain boundary transport.  相似文献   
23.
A simple method for estimating ventilation time scales from overturning stream functions is proposed. The stream function may be computed using either geometric coordinates or a generalized vertical coordinate, such as potential density (salinity in our study). The method is tested with a three-dimensional circulation model describing an idealized semi-enclosed ocean basin ventilated through a narrow strait over a sill, and the result is compared to age estimates obtained from a passive numerical age tracer. The best result is obtained when using the stream function in salinity coordinates. In this case, the reservoir-averaged advection time obtained from the overturning stream function in salinity coordinates agrees rather well with the mean age of the age tracer, and the corresponding maximum ages agree very well.  相似文献   
24.
In this paper, we investigate the impact of ambient temperature changes on the gravity reading of spring-based relative gravimeters. Controlled heating experiments using two Scintrex CG5 gravimeters allowed us to determine a linear correlation (R \(^{2}>\) 0.9) between ambient temperature and gravity variations. The relation is stable and constant for the two CG5 we used: ?5 nm/s\(^{2}/^\circ \)C. A linear relation is also seen between gravity and residual sensor temperature variations (R \(^{2}>\) 0.75), but contrary to ambient temperature, this relation is neither constant over time nor similar between the two instruments. The linear correction of ambient temperature on the controlled heating time series reduced the standard deviation at least by a factor of 2, to less than 10 nm/s\(^{2}\). The laboratory results allowed for reprocessing the data gathered on a field survey that originally aimed to characterize local hydrological heterogeneities on a karstic area. The correction of two years of monthly CG5 measurements from ambient temperature variations halved the standard deviation (from 62 to 32 nm/s\(^{2}\)) and led us to a better hydrological interpretation. Although the origin of this effect is uncertain, we suggest that an imperfect control of the sensor temperature may be involved, as well as a change of the properties of an electronic component.  相似文献   
25.
26.
In this work 13 Planetary Nebulae have been classified as Type I according to Peimbert's criteria (Peimbert, 1978). These objects have been added to a previous sample (Maciel and Faúndez-Abans, 1985) and diagrams of O/H versus N/H, S/H, Ne/H and Ar/H, as well as N/H versus S/H, Ne/H and Ar/H have been drawn. All of them exhibit a tendency for linear correlation; moreover, the behavior of O and N versus Ar and S are very similar, with approximately the same slope. When the excitation class parameter was included in the diagrams, no clear tendency can be discerned, for any class.  相似文献   
27.
This paper describes a Monte Carlo simulation of type Ia supernova data. It was shown earlier that the data of SNe Ia might contain a possible correlation between the estimated luminosity distances and internal extinctions. This correlation was shown by different statistical investigations of the data. In order to remove observational biases (for example the effect of the detection limit of the observing instrument) and to test the reality of the effect found earlier we developed a simple routine which simulates extinction values, redshifts and absolute magnitudes for Ia supernovae. We pointed out that the correlation found earlier in the real data between the internal extinction and luminosity distance does not occur in the simulated sample. Furthermore, it became obvious that the detection limit of the observing devices used in supernova projects does not affect the far end of the redshift‐luminosity distance relationship of Ia supernovae. This result strengthens the earlier conclusions of the authors that SN Ia supernovae alone do not support the existence of dark energy. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
28.
Colour–magnitude diagrams in the Washington system are presented for the first time for five star clusters projected on to the outer region of the Small Magellanic Cloud (SMC). The clusters are found to have ages in the range 0.1–1.0 Gyr, as derived from the fit of isochrones with   Z = 0.004  . This sample increases substantially the number of young clusters in the outer SMC – particularly in the south-east quadrant – with well-derived parameters. We combine our results with those for other clusters in the literature to derive as large and homogeneous a data base as possible (totalling 49 clusters) in order to study global effects. We find no conclusive evidence for a dispersion in the cluster ages and metallicities as a function of their distance from the galaxy centre, in the SMC outer region. L 114 and 115, although very distant, are very young clusters, lying in the bridge of the SMC and therefore most likely formed during the interaction which formed this feature. We also find very good agreement between the cluster age–metallicity relation (AMR) and the prediction from a bursting model from Pagel & Tautvaišienė with a burst that occurred 3 Gyr ago. Comparing the present cluster AMR with that derived by Harris & Zaritsky for field stars in the main body of the SMC, we find that field stars and clusters underwent similar chemical enrichment histories during approximately the last couple of Gyr, but their chemical evolution was clearly different between 4 and 10 Gyr ago.  相似文献   
29.
This paper describes an alternative approach for generating pointing models for telescopes equipped with serial kinematics, esp. equatorial or alt-az mounts. Our model construction does not exploit any assumption for the underlying physical constraints of the mount, however, one can assign various effects to the respective components of the equations. In order to recover the pointing model parameters, classical linear least squares fitting procedures can be applied. This parameterization also lacks any kind of parametric singularity. We demonstrate the efficiency of this type of model on real measurements with meter-class telescopes where the results provide a root mean square accuracy of 1.5?2 arcseconds.  相似文献   
30.
Small tidal forces in the Earth–Moon system cause detectable changes in the orbit. Tidal energy dissipation causes secular rates in the lunar mean motion n, semimajor axis a, and eccentricity e. Terrestrial dissipation causes most of the tidal change in n and a, but lunar dissipation decreases eccentricity rate. Terrestrial tidal dissipation also slows the rotation of the Earth and increases obliquity. A tidal acceleration model is used for integration of the lunar orbit. Analysis of lunar laser ranging (LLR) data provides two or three terrestrial and two lunar dissipation parameters. Additional parameters come from geophysical knowledge of terrestrial tides. When those parameters are converted to secular rates for orbit elements, one obtains dn/dt = \(-25.97\pm 0.05 ''/\)cent\(^{2}\), da/dt = 38.30 ± 0.08 mm/year, and di/dt = ?0.5 ± 0.1 \(\upmu \)as/year. Solving for two terrestrial time delays and an extra de/dt from unspecified causes gives \(\sim \) \(3\times 10^{-12}\)/year for the latter; solving for three LLR tidal time delays without the extra de/dt gives a larger phase lag of the N2 tide so that total de/dt = \((1.50 \pm 0.10)\times 10^{-11}\)/year. For total dn/dt, there is \(\le \)1 % difference between geophysical models of average tidal dissipation in oceans and solid Earth and LLR results, and most of that difference comes from diurnal tides. The geophysical model predicts that tidal deceleration of Earth rotation is \(-1316 ''\)/cent\(^{2}\) or 87.5 s/cent\(^{2}\) for UT1-AT, a 2.395 ms/cent increase in the length of day, and an obliquity rate of 9 \(\upmu \)as/year. For evolution during past times of slow recession, the eccentricity rate can be negative.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号