首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   318篇
  免费   14篇
  国内免费   8篇
测绘学   5篇
大气科学   29篇
地球物理   103篇
地质学   115篇
海洋学   23篇
天文学   40篇
综合类   2篇
自然地理   23篇
  2023年   2篇
  2021年   3篇
  2020年   5篇
  2019年   3篇
  2018年   12篇
  2017年   8篇
  2016年   10篇
  2015年   10篇
  2014年   12篇
  2013年   31篇
  2012年   16篇
  2011年   19篇
  2010年   19篇
  2009年   14篇
  2008年   13篇
  2007年   8篇
  2006年   18篇
  2005年   16篇
  2004年   13篇
  2003年   14篇
  2002年   9篇
  2001年   7篇
  2000年   10篇
  1999年   4篇
  1998年   8篇
  1997年   3篇
  1995年   7篇
  1994年   7篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1974年   1篇
  1973年   4篇
  1972年   1篇
排序方式: 共有340条查询结果,搜索用时 15 毫秒
31.
The Jurassic Bonanza arc, on Vancouver Island, British Columbia, represents an exhumed island arc crustal section of broadly diorite composition. We studied bodies of mafic and ultramafic cumulates within deeper levels of the arc to constrain the conditions and fractionation pathways leading from high-Mg basalt to andesite and dacite. Major element trends coupled with textural information show the intercumulus crystallization of amphibole, as large oikocrysts enclosing olivine in primitive cumulates controls the compositions of liquids until the onset of plagioclase crystallization. This process is cryptic, occurring only in the plutonic section, and explains the paucity of amphibole in mafic arc volcanics and the change in the Dy/Yb ratios in many arc suites with differentiation. The correlation of octahedral Al in hornblende with pressure in liquidus experiments on high-Mg basalts is applied as an empirical barometer to hornblendes from the Bonanza arc. It shows that crystallization took place at 470–880 MPa in H2O-saturated primitive basaltic magmas. There are no magmatic equivalents to bulk continental crust in the Bonanza arc; no amount of delamination of ultramafic cumulates will shift the bulk arc composition to the high-Mg# andesite composition of bulk continental crust. Garnet removal from wet magmas appears to be the key factor in producing continental crust, requiring high pressures and thick crust. Because oceanic island arcs are built on thinner crust, the long-term process generating the bulk continental crust is the accretion of island arcs to continental margins with attendant tectonic thickening.  相似文献   
32.
The global fisheries sector has undergone both rapid industrialization and considerable resource depletion. Unlike fisheries in the Northern Hemisphere, the Indonesian (and indeed Southeast Asian) sector is still largely dominated by small-scale producers, who are partially embedded within a subsistence economy. Changes in the nature of production and livelihoods in the fisheries sector appear similar to those in land-based agriculture but have received far less attention in the literature and demand further analysis given the distinct characteristics of the natural resource base. Using national datasets complemented by insights from a two-month period of fieldwork in South Sulawesi, this paper presents the process of capital intensification underpinning national fisheries growth and how it is transforming small-scale production systems. Despite increasing market integration, we found that smallholders have persisted across coastal production systems to an even stronger degree than land-based agriculture. We suggest some reasons why this is so. However, we also observed evidence of internal class differentiation within coastal communities. Such differentiation, combined with resource degradation and depletion, exposes the poorest in the community to enhanced livelihood vulnerability.  相似文献   
33.
Abstract By mineral and bulk compositions, the Lewis Cliff (LEW) 88516 meteorite is quite similar to the ALHA77005 martian meteorite. These two meteorites are not paired because their mineral compositions are distinct, they were found 500 km apart in ice fields with different sources for meteorites, and their terrestrial residence ages are different. Minerals in LEW88516 include: olivine, pyroxenes (low- and high-Ca), and maskelynite (after plagioclase); and the minor minerals chromite, whitlockite, ilmenite, and pyrrhotite. Mineral grains in LEW88516 range up to a few mm. Texturally, the meteorite is complex, with regions of olivine and chromite poikilitically enclosed in pyroxene, regions of interstitial basaltic texture, and glass-rich (shock) veinlets. Olivine compositions range from Fo64 to Fo70, (avg. Fo67), more ferroan and with more variation than in ALHA77005 (Fo69 to Fo73). Pyroxene compositions fall between En77Wo4 and En65Wo15 and in clusters near En63Wo9 and En53Wo33, on average more magnesian and with more variation than in ALHA77005. Shock features in LEW88516 range from weak deformation through complete melting. Bulk chemical analyses by modal recombination of electron microprobe analyses, instrumental neutron activation, and radiochemical neutron activation confirm that LEW88516 is more closely related to ALHA77005 than to other known martian meteorites. Key element abundance ratios are typical of martian meteorites, as is its non-chondritic rare earth pattern. Differences between the chemical compositions of LEW88516 and ALHA77005 are consistent with slight differences in the proportions of their constituent minerals and not from fundamental petrogenetic differences. Noble gas abundances in LEW88516, like those in ALHA77005, show modest excesses of 40Ar and 129Xe from trapped (shock-implanted) gas. As with other ALHA77005 and the shergottite martian meteorites (except EETA79001), noble gas isotope abundances in LEW88516 are consistent with exposure to cosmic rays for 2.5–3 Ma. The absence of substantial effects of shielding from cosmic rays suggest LEW88516 spent this time as an object no larger than a few cm in diameter.  相似文献   
34.
Apollo 12 ropy glasses revisited   总被引:1,自引:0,他引:1  
Abstract— We analyzed ropy glasses from Apollo 12 soils 12032 and 12033 by a variety of techniques including SEM/EDX, electron microprobe analysis, INAA, and 39Ar-40Ar age dating. The ropy glasses have KREEP-like compositions different from those of local Apollo 12 mare soils; it is likely that the ropy glasses are of exotic origin. Mixing calculations indicate that the ropy glasses formed from a liquid enriched in KREEP and that the ropy glass liquid also contained a significant amount of mare material. The presence of solar Ar and a trace of regolith-derived glass within the ropy glasses are evidence that the ropy glasses contain a small regolith component Anorthosite and crystalline breccia (KREEP) clasts occur in some ropy glasses. We also found within these glasses clasts of felsite (fine-grained granitic fragments) very similar in texture and composition to the larger Apollo 12 felsites, which have a 39Ar-40Ar degassing age of 800 ± 15 Ma (Bogard et al, 1992). Measurements of 39Ar-40Ar in 12032 ropy glass indicate that it was degassed at the same time as the large felsite although the ropy glass was not completely degassed. The ropy glasses and felsites, therefore, probably came from the same source. Most early investigators suggested that the Apollo 12 ropy glasses were part of the ejecta deposited at the Apollo 12 site from the Copernicus impact Our new data reinforce this model. If these ropy glasses are from Copernicus, they provide new clues to the nature of the target material at the Copernicus she, a part of the Moon that has not been sampled directly.  相似文献   
35.
Abstract— We have investigated 10 new specimens of the Millbillillie eucrite to study its textures and mineral compositions by electron probe microanalyser and scanning electron microscope. Although originally described as having fine-grained texture, the new specimens show diversity of texture. The compositions (Mg/Fe ratios) of the host pigeonites and augite lamellae are homogeneous, respectively, in spite of the textural variation. In addition to their chemical homogeneity, pyroxenes in coarse and fine-grained clasts are partly inverted to orthopyroxene. Chemical zoning of plagioclase during crystal growth is preserved. This eucrite includes areas of granulitic breccias and impact melts. Large scale textures show a subparallel layering suggesting incomplete mixing and deposition of impact melt and lithic fragments. An 39Ar-40Ar age determination for a coarse-grained clast indicates a strong degassing event at 3.55 ± 0.02 Ga. We conclude that Millbillillie is among the most equilibrated eucrites produced by thermal annealing after impact brecciation. According to the classification of impact breccias, Millbillillie can be classified as a mixture of granulitic breccias and impact melts. The last significant thermal event is characterized by network-like glassy veins that run through clasts and matrices. Consideration of textural observations and requirements for Ar-degassing suggests that the 39Ar-40Ar age could in principle date either the earilier brecciation and annealing event or the event which produced the veins.  相似文献   
36.
The Sutter's Mill C‐type meteorite fall occurred on 22 April 2012 in and around the town of Coloma, California. The exact location of the meteorite fall was determined within hours of the event using a combination of eyewitness reports, weather radar imagery, and seismometry data. Recovery of the first meteorites occurred within 2 days and continued for months afterward. The recovery effort included local citizens, scientists, and meteorite hunters, and featured coordination efforts by local scientific institutions. Scientific analysis of the collected meteorites revealed characteristics that were available for study only because the rapid collection of samples had minimized terrestrial contamination/alteration. This combination of factors—rapid and accurate location of the event, participation in the meteorite search by the public, and coordinated scientific investigation of recovered samples—is a model that was widely beneficial and should be emulated in future meteorite falls. The tools necessary to recreate the Sutter's Mill recovery are available, but are currently underutilized in much of the world. Weather radar networks, scientific institutions with interest in meteoritics, and the interested public are available globally. Therefore, it is possible to repeat the Sutter's Mill recovery model for future meteorite falls around the world, each for relatively little cost with a dedicated researcher. Doing so will significantly increase the number of fresh meteorite falls available for study, provide meteorite material that can serve as the nuclei of new meteorite collections, and will improve the public visibility of meteoritics research.  相似文献   
37.
Summary. Closely spaced refraction profiling across the Whipple Mountains metamorphic core complex in southeastern California yields a complex picture of crustal structure in this region of large continental extension. A NE-directed profile, parallel to the extension direction, reveals a high-velocity mid-crustal layer (6.6–6.8 km s−1) at 16-18 km depth, bounded above and below by laterally discontinuous low-velocity zones (<6.0 km s−1). In marked contrast, a NW-directed profile shows a more uniform 6.0 km s−1 crust down to the crust-mantle boundary. The apparent contrast between these two perpendicular profiles may be related not only to a more complex geologic structure in the NW-SE direction, but also to velocity anisotropy associated with mid-crustal mylonites. Despite the differences between the two refraction profiles, both define a flat Moho at 26-27 km depth with an associated upper mantle-velocity of 7.8 km s−1. This observation is significant as it suggests that, although the amount of extension has been highly variable regionally, the crust is no thinner beneath the Whipple Mountains (where extension has been extreme) than the surrounding mountain ranges. Such an observation requires either that the crust was considerably thicker prior to extension, or that lateral flow in the lower crust and/or inflation of the crust via magmatism occurred contemporaneous with extension.  相似文献   
38.
We present measurements of magnetic field strength and geometry on the surfaces of T Tauri stars (TTS) with and without circumstellar disks. We use these measurements to argue that magnetospheric accretion models should not assume that a fixed fraction of the stellar surface contains magnetic field lines that couple with the disk. We predict the fractional area of accretion footpoints, using magnetospheric accretion models and assuming field strength is roughly constant for all TTS. Analysis of Zeeman broadened infrared line profiles shows that individual TTS each have a distribution of surface magnetic field strengths extending up to 6 kG. Averaging over this distribution yields mean magnetic field strengths of 1-3 kG for all TTS, regardless of whether the star is surrounded by a disk. These strong magnetic fields suggest that magnetic pressure dominates gas pressure in TTS photospheres, indicating the need for new model atmospheres. The He I 5876 Å emission line in TTS can be strongly polarized, so that magnetic field lines at the footpoints of accretion have uniform polarity. The circular polarization signal appears to be rotationally modulated, implying that accretion and perhaps the magnetosphere are not axisymmetric. Time series spectropolarimetry is fitted reasonably well by a simple model with one magnetic spot on the surface of a rotating star. On the other hand, spectropolarimetry of photospheric absorption lines rules out a global dipolar field at the stellar surface for at least some TTS.  相似文献   
39.
Abstract— Several experimentally and naturally shocked silicate samples were analyzed for noble gas contents to further characterize the phenomenon by which ambient gases can be strongly implanted into silicates by shock and to evaluate the possible importance of this process in capturing planetary atmospheres in naturally shocked samples. Gas implantation efficiency is apparently mineral independent, as mono-mineralic powders of oligoclase, labradorite, and diopside and a powdered basalt shocked to 20 GPa show similar efficiencies. The retentivity of shock-implanted gas during stepwise heating in the laboratory is defined in terms of two parameters: activation energy for diffusion as determined from Arrhenius plots, and the extraction temperature at which 50% of the gas is released, both of which correlate with shock pressure. These gas diffusion parameters are essentially identical for radiogenic 40Ar and shock-implanted 40Ar in oligoclase and labradorite shocked to 20 GPa, suggesting that the two 40Ar components occupy analogous lattice sites. Our experiments indicate that gas implantation occurs through an increasing production of microcracks/defects in the lattice with increasing shock pressure. The ease of diffusive loss of implanted gas is controlled by the degree of annealing of these microcracks/defects. Identification of a shock-implanted component requires relatively large concentrations of implanted gas which is strongly retained (i.e., moderate activation energy) in order to separate implanted gas from surface adsorbed gases. Literature data on shocked terrestrial samples indicate only weak evidence for shock-implanted gases, with an upper limit for 40Ar of ~ 10?6 cm3STP/g. New analyses of shocked samples from the Wabar Crater indicate the presence of shock-implanted Ar, having concentrations (~ 10?4 cm3STP/g) and activation energies for diffusive loss which are essentially that expected from experimental studies. Lack of sufficient target porosity or the presence of ground water may explain the sparse evidence for shock-implanted gas at other terrestrial craters. Although Wabar Crater may represent an unusually favorable environment on Earth for shock-implanting gases, surfaces of other planetary bodies, such as Mars, may frequently provide such environments. Analyses of returned samples from old Martian terraines may document temporal changes in earlier atmospheric composition.  相似文献   
40.
Abstract— Isotopic ages of meteorites that indicate chronometer resetting due to impact heating are summarized. Most of the ages were obtained by the 39Ar-40Ar technique, but several Rb-Sr, Pb-Pb, and Sm-Nd ages also suggest some degree of impact resetting. Considerations of experimental data on element diffusion in silicates suggest that various isotopic chronometers ought to differ in their ease of resetting during shock heating in the order K-Ar (easiest), Rb-Sr, Pb-Pb, and Sm-Nd, which is approximately the order observed in meteorites. Partial rather than total chronometer resetting by impacts appears to be the norm; consequently, interpretation of the event age is not always straightforward. Essentially all 39Ar-40Ar ages of eucrites and howardites indicate partial to total resetting in the relatively narrow time interval of 3.4–4.1 Ga ago (1 Ga = 109 years). Several disturbed Rb-Sr ages appear consistent with this age distribution. This grouping of ages and the brecciated nature of many eucrites and all howardites argues for a large-scale impact bombardment of the HED parent body during the same time period that the Moon received its cataclysmic bombardment. Other meteorite parent bodies such as those of mesosiderites, some chondrites, and IIE irons also may have experienced this bombardment. These data suggest that the early bombardment was not lunar specific but involved much of the inner Solar System, and may have been caused by breakup of a larger planetismal. Although a few chondrites show evidence of age resetting ~3.5–3.9 Ga ago, most impact ages of chondrites tend to fall below 1.3 Ga in age. A minimum of ~4 impact events, including events at 0.3, 0.5, 1.2, and possibly 0.9 Ga appear to be required to explain the younger ages of H, L, and LL chondrites, although additional events are possible. Most L chondrites show evidence of shock, and the majority of 39Ar-40Ar ages of L chondrites fall near 0.5 Ga. The L chondrite parent body apparently experienced a major impact at this time, which may have disrupted it. The observations (1) that lunar highland rocks experienced major impact resetting of various isotopic chronometers ~3.7–4.1 Ga ago; (2) that the HED parent body experienced widespread impact resetting of the K-Ar chronometer but only modest disturbance of other isotopic systems, during a similar time period; (3) that ordinary chondrite parent bodies show much more recent and less extensive impact resetting; and (4) that impacts, which initiated cosmic-ray exposure of most stone meteorites almost never reset isotopic chronometers, may all be a consequence of relative parent body size. Greater degrees of isotopic chronometer resetting occur in larger and warmer impact ejecta deposits that cool slowly. The relatively greater size of bodies like the Moon and Vesta (assumed to be the parent asteroid of HED meteorites) both permit such favorable ejecta deposits to occur more easily compared to smaller parent bodies (generally assumed for chondrites) and also protect parent objects from collisional disruption. Thus, impacts on larger bodies would tend to more easily reset chronometers, consistent with the observed relative ease of resetting of Moon (easiest), HED, chondrites and of K-Ar (easiest), Rb-Sr, other chronometers. In contrast, the more recent impact ages of chondrites are postulated to represent collisional disruption of smaller parent objects whose fragments are more readily removed from the meteorite source reservoirs. Impacts that initiate cosmic-ray exposure are mostly small in scale and produce little heating.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号