首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1453篇
  免费   71篇
  国内免费   3篇
测绘学   20篇
大气科学   95篇
地球物理   359篇
地质学   697篇
海洋学   117篇
天文学   176篇
综合类   5篇
自然地理   58篇
  2024年   3篇
  2023年   5篇
  2022年   18篇
  2021年   25篇
  2020年   22篇
  2019年   34篇
  2018年   54篇
  2017年   60篇
  2016年   58篇
  2015年   54篇
  2014年   73篇
  2013年   111篇
  2012年   54篇
  2011年   114篇
  2010年   93篇
  2009年   103篇
  2008年   82篇
  2007年   53篇
  2006年   59篇
  2005年   54篇
  2004年   49篇
  2003年   40篇
  2002年   39篇
  2001年   23篇
  2000年   22篇
  1999年   15篇
  1998年   12篇
  1997年   15篇
  1996年   13篇
  1995年   9篇
  1994年   19篇
  1993年   9篇
  1992年   14篇
  1991年   13篇
  1990年   6篇
  1989年   13篇
  1988年   6篇
  1987年   8篇
  1986年   6篇
  1985年   4篇
  1984年   4篇
  1983年   9篇
  1982年   5篇
  1981年   4篇
  1980年   6篇
  1979年   6篇
  1977年   5篇
  1975年   6篇
  1974年   3篇
  1973年   4篇
排序方式: 共有1527条查询结果,搜索用时 15 毫秒
991.
Building on previous studies of volcanoes around the Hellas basin with new studies of imaging (High-Resolution Stereo Camera (HRSC), Thermal Emission Imaging System (THEMIS), Mars Orbiter Camera (MOC), High-Resolution Imaging Science Experiment (HiRISE), Context Imager (CTX)), multispectral (HRSC, Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité (OMEGA)), topographic (Mars Orbiter Laser Altimeter (MOLA)) and gravity data, we define a new Martian volcanic province as the Circum-Hellas Volcanic Province (CHVP). With an area of >2.1 million km2, it contains the six oldest central vent volcanoes on Mars, which formed after the Hellas impact basin, between 4.0 and 3.6 Ga. These volcanoes mark a transition from the flood volcanism that formed Malea Planum ~3.8 Ga, to localized edifice-building eruptions. The CHVP volcanoes have two general morphologies: (1) shield-like edifices (Tyrrhena, Hadriaca, and Amphitrites Paterae), and (2) caldera-like depressions surrounded by ridged plains (Peneus, Malea, and Pityusa Paterae). Positive gravity anomalies are found at Tyrrhena, Hadriaca, and Amphitrites, perhaps indicative of dense magma bodies below the surface. The lack of positive-relief edifices and weak gravity anomalies at Peneus, Malea, and Pityusa suggest a fundamental difference in their formation, styles of eruption, and/or compositions. The northernmost volcanoes, the ~3.7–3.9 Ga Tyrrhena and Hadriaca Paterae, have low slopes, well-channeled flanks, and smooth caldera floors (at tens of meters/pixel scale), indicative of volcanoes formed from poorly consolidated pyroclastic deposits that have been modified by fluvial and aeolian erosion and deposition. The ~3.6 Ga Amphitrites Patera also has a well-channeled flank, but it and the ~3.8 Ga Peneus Patera are dominated by scalloped and pitted terrain, pedestal and ejecta flow craters, and a general ‘softened’ appearance. This morphology is indicative not only of surface materials subjected to periglacial processes involving water ice, but also of a surface composed of easily eroded materials such as ash and dust. The southernmost volcanoes, the ~3.8 Ga Malea and Pityusa Paterae, have no channeled flanks, no scalloped and pitted terrain, and lack the ‘softened’ appearance of their surfaces, but they do contain pedestal and ejecta flow craters and large, smooth, bright plateaus in their central depressions. This morphology is indicative of a surface with not only a high water ice content, but also a more consolidated material that is less susceptible to degradation (relative to the other four volcanoes). We suggest that Malea and Pityusa (and possibly Peneus) Paterae are Martian equivalents to Earth's giant calderas (e.g., Yellowstone, Long Valley) that erupted large volumes of volcanic materials, and that Malea and Pityusa are probably composed of either lava flows or ignimbrites. HRSC and OMEGA spectral data indicate that dark gray to slightly red materials (often represented as blue or black pixels in HRSC color images), found in the patera floors and topographic lows throughout the CHVP, have a basaltic composition. A key issue is whether this dark material represents concentrations of underlying basaltic material eroded by various processes and exposed by aeolian winnowing, or if the material was transported from elsewhere on Mars by regional winds. Understanding the provenance of these dark materials may be the key to understanding the volcanic diversity of the Circum-Hellas Volcanic Province.  相似文献   
992.
Most of the visible universe is in the highly ionised plasma state, and most of that plasma is collision-free. Three physical phenomena are responsible for nearly all of the processes that accelerate particles, transport material and energy, and mediate flows in systems as diverse as radio galaxy jets and supernovae explosions through to solar flares and planetary magnetospheres. These processes in turn result from the coupling amongst phenomena at macroscopic fluid scales, smaller ion scales, and down to electron scales. Cross-Scale, in concert with its sister mission SCOPE (to be provided by the Japan Aerospace Exploration Agency—JAXA), is dedicated to quantifying that nonlinear, time-varying coupling via the simultaneous in-situ observations of space plasmas performed by a fleet of 12 spacecraft in near-Earth orbit. Cross-Scale has been selected for the Assessment Phase of Cosmic Vision by the European Space Agency.   相似文献   
993.
Exploring the global dynamics of a planetary system involves computing integrations for an entire subset of its parameter space. This becomes time-consuming in presence of a planet close to the central star, and in practice this planet will be very often omitted. We derive for this problem an averaged Hamiltonian and the associated equations of motion that allow us to include the average interaction of the fast planet. We demonstrate the application of these equations in the case of the μ Arae system where the ratio of the two fastest periods exceeds 30. In this case, the effect of the inner planet is limited because the planet’s mass is one order of magnitude below the other planetary masses. When the inner planet is massive, considering its averaged interaction with the rest of the system becomes even more crucial.  相似文献   
994.
The Cassini–Huygens mission, comprising the NASA Saturn Orbiter and the ESA Huygens Probe, arrived at Saturn in late June 2004. The Huygens probe descended under parachute in Titan’s atmosphere on 14 January 2005, 3 weeks after separation from the Orbiter. We discuss here the breakthroughs that the Huygens probe, in conjunction with the Cassini spacecraft, brought to Titan science. We review the achievements ESA’s Huygens probe put forward and the context in which it operated. The findings include new localized information on several aspects of Titan science: the atmospheric structure and chemical composition; the aerosols distribution and content; the surface morphology and composition at the probe’s landing site; the winds, the electrical properties, and the implications on the origin and evolution of the satellite.  相似文献   
995.
We present new multiband CCD photometric observations of three chromospherically active stars with long periods (V2075 Cyg, FG UMa and BM CVn). The observations were made at the Çanakkale Onsekiz Mart University Observatory in 2006 and 2007. We analyzed BVRI (Bessell) CCD observations of these three RS CVn-type SB1 binaries with the following three steps: (i) Photometric rotation periods were obtained by analyzing their light variations with a differential corrections method and a Fourier transform technique. (ii) Light variations, observed over three or more consecutive orbital cycles, were investigated by using dark (cool) spot models with the program SPOT. (iii) Surface differential rotation coefficients for the primary components of these binaries were derived using our own photometric periods together with orbital periods taken from the literature.  相似文献   
996.
We present new spectral synthesis models for solar metallicity stellar populations, based on a library of stellar spectra that extends across near-IR wavelengths out to 2.4 µm at a resolution approaching 1000. We show that the spectra of massive star clusters in the starburst galaxy M 82 can be reproduced very well with these models. We compare near-IR spectroscopic ages with optical ages, and discuss the main sources of (systematic) errors that still affect those ages.  相似文献   
997.
We point out a strong time evolution of the mass-to-light conversion factor, η, commonly used to estimate masses of unresolved star clusters from observed cluster spectrophotometric measures. We present a series of gas-dynamical models, coupled with the Cambridge stellar evolution tracks, to compute line-of-sight velocity dispersions and half-light radii weighted by the luminosity. We explore a range of initial conditions, varying in turn the cluster mass and/or density, and the stellar population’s initial mass function. We find that η, and hence the estimated cluster mass, may increase by as much as a factor of three over time-scales of 50 million yr. We apply these results to an hypothetic cluster mass distribution function (d.f.), and show that the d.f. shape may be strongly affected at the low-mass end by this effect. Fitting truncated isothermal (Michie–King) models to the projected light profile leads to over-estimates of the concentration parameter, c, of δ c≈0.3 compared to the same functional fit applied to the projected mass density.  相似文献   
998.
The origin of the martian chaotic terrains is still uncertain; and a variety of geologic scenarios have been proposed. We provide topographic profiles of different chaos landscapes, notably Aureum and Hydraotes Chaos, showing that an initial shallow ground subsidence occurred at the first step of the chaos formation. We infer that the subsidence was caused by intrusion of a volcanic sill; which could have produced consequent melting as well as release of ground water from disrupted aquifer. Signs of a volcanic activity are observed on the floor of Hydraotes Chaos, a complex and deep depression located at the junction of three channels. The volcanic activity is represented by small, 0.5 to 1.5 km diameter, rounded cones with summit pits. The cone's size and morphology, as well as the presence of possible surrounding lava flows, suggest that they are primary volcanic cones similar to terrestrial cinder cones. The identification of volcanic activity on the deepest chaos, where the lower crustal thickness and the faults/fractures system contributed to the magma rising, reveals that magmatic activity, proved by the cones, and possibly help by structural activity, has been a major factor in the formation of chaotic terrains.  相似文献   
999.
Powdered samples of carbon-nitrogen-hydrogen “tholins” that mimic Titan's atmosphere aerosols were produced under levitation conditions in the laboratory with a dusty plasma (PAMPRE experiment) using different initial N2:CH4 gas mixtures and studied using UV Raman and infrared spectroscopy, X-ray diffraction and high resolution transmission electron microscopy (HRTEM). Comparison between the tholins produced in the PAMPRE experiments and samples prepared by other techniques reveal that they form a fairly homogeneous family of hydrogenated carbon nitride materials. Wall effects during the PAMPRE deposition experiments and other were found to have little effect on the chemical structure of tholins. The first-order UV Raman bands of the disordered carbonaceous materials point to a large contribution of sp2 clusters present compared with olefinic CN or CC groupings, whereas features at 690 and 980 cm−1 suggest C3N3 rings are present as a species inserted in the macromolecular network. Diffraction techniques do not indicate the presence of large polyaromatic species in any of the tholins studied, whatever their nitrogen concentration, in disagreement with certain previous observations. This precludes the idea that the nature and degree of absorption in the visible range is controlled by the size of polyaromatic species, as has been observed in series of carbon-based materials obtained via thermal processing. Infrared spectroscopy analysis of the tholins has confirmed earlier identifications of chemical groups present including primary amines, nitriles, and alkyl moieties such as CH2/CH3, but has ruled out CH2/CH3 branches appearing on secondary or tertiary amines. Similar analyses were also performed on a polymeric (HCN)x material, which was found to present several similarities with the tholins, hence suggesting similar polymerization processes.  相似文献   
1000.
The study area covers volcanic-volcanosedimentary units of Eocene age in the Sivas-Ula? area from Turkey. The pyroclastic (tuffaceous claystone/siltsone/sandstone, crystal ash tuff) and volcanic (basalt, basaltic andesite, andesite) rocks of the Karacalar member from the Kaleköy Formation include volcanogenic (plagioclase, augite, hornblende, biotite), diagenetic (K-feldspar, mixed-layered chlorite-smectite/C-S, chlorite, analcime) and post-volcanic (calcite, dolomite, quartz) minerals. The volcanogenic (plagioclase), diagenetic (K-feldspar, C-S, chlorite), postvolcanic (quartz, calcite, dolomite) and detrital (illite) minerals were observed in the epiclastic (shale, siltstone, calcareous siltstone, sandstone, calcareous sandstone) and chemical (limestone, gypsum) rocks of the Yapali member from this formation. C-S + K-feldspar zoning is widely developed by due to the interaction between sea-water and volcanic glass in basic-intermediate composition, on the basis of optic and electron microscopes and also X-rays data. This zone corresponds to the deeper parts of the Sivas basin in the Eocene period and show vertically a transition into zeolite zone in approximately northern parts of the basin (Yavu area).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号