首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5178篇
  免费   1347篇
  国内免费   41篇
测绘学   104篇
大气科学   194篇
地球物理   2514篇
地质学   2277篇
海洋学   345篇
天文学   744篇
综合类   10篇
自然地理   378篇
  2022年   9篇
  2021年   70篇
  2020年   95篇
  2019年   228篇
  2018年   254篇
  2017年   338篇
  2016年   393篇
  2015年   407篇
  2014年   443篇
  2013年   548篇
  2012年   377篇
  2011年   381篇
  2010年   377篇
  2009年   291篇
  2008年   317篇
  2007年   233篇
  2006年   200篇
  2005年   213篇
  2004年   175篇
  2003年   179篇
  2002年   162篇
  2001年   137篇
  2000年   125篇
  1999年   47篇
  1998年   33篇
  1997年   27篇
  1996年   26篇
  1995年   33篇
  1994年   24篇
  1993年   21篇
  1992年   20篇
  1991年   31篇
  1990年   27篇
  1989年   21篇
  1988年   12篇
  1987年   29篇
  1986年   21篇
  1985年   19篇
  1984年   27篇
  1983年   23篇
  1982年   22篇
  1981年   19篇
  1980年   17篇
  1979年   7篇
  1978年   14篇
  1977年   12篇
  1976年   8篇
  1975年   13篇
  1974年   7篇
  1973年   11篇
排序方式: 共有6566条查询结果,搜索用时 31 毫秒
31.
The Late Permian (Wuchiapingian) Alcotas Formation in the SE Iberian Ranges consists of one red alluvial succession where abundant soil profiles developed. Detailed petrographical and sedimentological studies in seven sections of the Alcotas Formation allow six different types of palaeosols, with distinctive characteristics and different palaeogeographical distribution, to be distinguished throughout the South‐eastern Iberian Basin. These characteristics are, in turn, related to topographic, climatic and tectonic controls. The vertical distribution of the palaeosols is used to differentiate the formation in three parts from bottom to top showing both drastic and gradual vertical upwards palaeoenvironmental changes in the sections. Reconstruction of palaeoenvironmental conditions based on palaeosols provides evidence for understanding the events that occurred during the Late Permian, some few millions of years before the well‐known Permian‐Triassic global crisis.  相似文献   
32.
Fossil stromatolites may reveal information about their hydrochemical palaeoenvironment, provided that assignment to a specific microbial community and a corresponding biogeochemical mechanism of formation can be made. Tithonian stromatolites of the Münder Formation at Thüste, north Germany, have traditionally been considered as formed by intertidal cyanobacterial communities. However, thin sections of the stromatolites show elongated angular traces of former gypsum crystals in a dense arrangement, but no algal or cyanobacterial filament traces. Moreover, high Fe2+ and Mn2+ contents, oxygen‐isotope and sulphur‐isotope ratios of carbonate‐bound sulphates, and sulphurized hydrocarbon biomarkers of the stromatolitic carbonate indicate that CaCO3 precipitation occurred near the oxic–anoxic interface as a result of intensive bacterial sulphur cycling rather than photosynthetic activity. Furthermore, anaerobic oxidation of methane by Archaea may have driven CaCO3 precipitation in deeper parts of the biofilm community, as reflected by high concentrations of squalane with a strongly negative δ13C in conjunction with evaporite pseudomorphs showing extremely low δ13CCarb ratios. Consequently, the Thüste stromatolites are now interpreted as having initially formed by gypsum impregnation of biofilms. Subsequently, early Mg‐calcitic calcitization within the biofilms occurred because of combined bacterial iron, manganese and sulphate reduction, with an increasing contribution of anaerobic oxidation of methane with depth. This model plausibly explains the prominent preservation of signals derived from oxygen‐independent metabolic pathways, whereas virtually no geochemical record exists for an aerobic community that may, nevertheless, have prevailed at the stromatolite surface. Photic‐zone stromatolites with a prominent signal of anaerobic oxidation of methane may be common in, and indicative of, oxygen‐depleted sulphate‐bearing environments with high rates of methane production, conditions that possibly were fulfilled at the Archaean to Proterozoic transition.  相似文献   
33.
The Lufilian foreland is a triangular-shaped area located in the SE of the Democratic Republic of Congo and to the NE of the Lufilian arc, which hosts the well-known Central African Copperbelt. The Lufilian foreland recently became an interesting area with several vein-type (e.g., Dikulushi) and stratiform (e.g., Lufukwe and Mwitapile) copper occurrences. The Lufilian foreland stratiform Cu mineralization is, to date, observed in sandstone rock units belonging to the Nguba and Kundelungu Groups (Katanga Supergroup).The Mwitapile sandstone-hosted stratiform Cu prospect is located in the north eastern part of the Lufilian foreland. The host rock for the Cu mineralization is the Sonta Sandstone of the Ngule Subgroup (Kundelungu Group). A combined remote sensing, petrographic and fluid inclusion microthermometric analysis was performed at Mwitapile and compared with similar analysis previously carried out at Lufukwe to present a metallogenic model for the Mwitapile- and Lufukwe-type stratiform copper deposits. Interpretation of ETM+ satellite images for the Mwitapile prospect and the surrounding areas indicate the absence of NE–SW or ENE–WSW faults, similar to those observed controlling the mineralization at Lufukwe. Faults with these orientations are, however, present to the NW, W, SW and E of the Mwitapile prospect. At Mwitapile, the Sonta Sandstone host rock is intensely compacted, arkosic to calcareous with high silica cementation (first generation of authigenic quartz overgrowths). In the Sonta Sandstone, feldspar and calcite are present in disseminated, banded and nodular forms. Intense dissolution of these minerals caused the presence of disseminated rectangular, pipe-like and nodular dissolution cavities. Sulfide mineralization is mainly concentrated in these cavities. The hypogene sulfide minerals consist of two generations of pyrite, chalcopyrite, bornite and chalcocite, separated by a second generation of authigenic quartz overgrowth. The hypogene sulfide minerals are replaced by supergene digenite and covellite. Fluid inclusion microthermometry on the first authigenic quartz phase indicates silica precipitation from an H2O–NaCl–CaCl2 fluid with a minimum temperature between 111 and 182 °C and a salinity between 22.0 and 25.5 wt.% CaCl2 equiv. Microthermometry on the second authigenic quartz overgrowths and in secondary trails related to the mineralization indicate that the mineralizing fluid is characterized by variable temperatures (Th = 120 to 280 °C) and salinities (2.4 to 19.8 wt.% NaCl equiv.) and by a general trend of increasing temperatures with increasing salinities.Comparison between Mwitapile and Lufukwe indicates that the stratiform Cu mineralization in the two deposits is controlled by similar sedimentary, diagenetic and structural factors and likely formed from a similar mineralizing fluid. A post-orogenic timing is proposed for the mineralization in both deposits. The main mineralization controlling factors are grain size, clay and pyrobitumen content, the amount and degree of feldspar and/or calcite dissolution and the presence of NE–SW to ENE–WSW faults. The data support a post-orogenic fluid-mixing model for the Mwitapile- and Lufukwe-type sandstone-hosted stratiform Cu deposits, in which the mineralization is related to the mixing between a Cu-rich hydrothermal fluid, with a temperature up to 280 °C and a maximum salinity of 19.8 wt.% NaCl equiv., with a colder low salinity reducing fluid present in the sandstone host rock. The mineralizing fluid likely migrated upwards to the sandstone source rocks along NE–SW to ENE–WSW orientated faults. At Lufukwe, the highest copper grades at surface outcrops and boreholes were found along and near to these faults. At Mwitapile, where such faults are 2 to 3 km away, the Cu grades are much lower than at Lufukwe. Copper precipitation was possibly promoted by reduction from pre-existing hydrocarbons and non-copper sulfides and by the decrease in fluid salinity and temperature during mixing. Based on this research, new Cu prospects were proposed at Lufukwe and Mwitapile and a set of recommendations for further Cu exploration in the Lufilian foreland is presented.  相似文献   
34.
Non-conservative behavior of dissolved inorganic phosphate (DIP) in estuaries is generally ascribed to desorption from iron and aluminum (hydr)oxides with increasing salinity. Here, we assess this hypothesis by simulating the reversible adsorption of phosphate onto a model oxide (goethite) along physico-chemical gradients representative of surface and subsurface estuaries. The simulations are carried out using a surface complexation model (SCM), which represents the main aqueous speciation and adsorption reactions of DIP, plus the ionic strength-dependent coulombic interactions in solution and at the mineral-solution interface. According to the model calculations, variations in pH and salinity alone are unlikely to explain the often reported production of DIP in surface estuaries. In particular, increased aqueous complexation of phosphate by Mg2+ and Ca2+ ions with increasing salinity is offset by the formation of ternary Mg-phosphate surface complexes and the drop in electrical potential at the mineral-water interface. However, when taking into account the downstream decrease in the abundance of sorption sites, the model correctly simulates the observed release of DIP in the Scheldt estuary. The sharp increase in pH accompanying the admixing of seawater to fresh groundwater should also cause desorption of phosphate from iron oxyhydroxides during seawater intrusion in coastal aquifers. As for surface estuaries, the model calculations indicate that significant DIP release additionally requires a reduction in the phosphate sorption site density. In anoxic aquifers, this can result from the supply of seawater sulfate and the subsequent reductive dissolution of iron oxyhydroxides coupled to microbial sulfate reduction.  相似文献   
35.
Magnesium and strontium isotope signatures were determined during different seasons for the main rivers of the Moselle basin, northeastern France. This small basin is remarkable for its well-constrained and varied lithology on a small distance scale, and this is reflected in river water Sr isotope compositions. Upstream, where the Moselle River drains silicate rocks of the Vosges mountains, waters are characterized by relatively high 87Sr/86Sr ratios (0.7128-0.7174). In contrast, downstream of the city of Epinal where the Moselle River flows through carbonates and evaporites of the Lorraine plateau, 87Sr/86Sr ratios are lower, down to 0.70824.Magnesium in river waters draining silicates is systematically depleted in heavy isotopes (δ26Mg values range from −1.2 to −0.7‰) relative to the value presently estimated for the continental crust and a local diorite (−0.5‰). In comparison, δ26Mg values measured in soil samples are higher (∼0.0‰). This suggests that Mg isotope fractionation occurs during mineral leaching and/or formation of secondary clay minerals. On the Lorraine plateau, tributaries draining marls, carbonates and evaporites are characterized by low Ca/Mg (1.5-3.2) and low Ca/Sr (80-400) when compared to local carbonate rocks (Ca/Mg = 29-59; Ca/Sr = 370-2200), similar to other rivers draining carbonates. The most likely cause of the Mg and Sr excesses in these rivers is early thermodynamic saturation of groundwater with calcite relative to magnesite and strontianite as groundwater chemistry progressively evolves in the aquifer. δ26Mg of the dissolved phases of tributaries draining mainly carbonates and evaporites are relatively low and constant throughout the year (from −1.4‰ to −1.6‰ and from −1.2‰ to −1.4‰, respectively), within the range defined for the underlying rocks. Downstream of Epinal, the compositions of the Moselle River samples in a δ26Mg vs. 87Sr/86Sr diagram can be explained by mixing curves between silicate, carbonate and evaporite waters, with a significant contribution from the Vosgian silicate lithologies (>70%). Temporal co-variation between δ26Mg and 87Sr/86Sr for the Moselle River throughout year is also observed, and is consistent with a higher contribution from the Vosges mountains in winter, in terms of runoff and dissolved element flux. Overall, this study shows that Mg isotopes measured in waters, rocks and soils, coupled with other tracers such as Sr isotopes, could be used to better constrain riverine Mg sources, particularly if analytical uncertainties in Mg isotope measurements can be improved in order to perform more precise quantifications.  相似文献   
36.
The crystallographic structures of the synthetic cheralite, CaTh(PO4)2, and its homolog CaNp(PO4)2 have been investigated by X-ray diffraction at room temperature. Rietveld analyses showed that both compounds crystallize in the monoclinic system and are isostructural to monazite LnPO4 (Ln = La to Gd). The space group is P21/n (I.T. = 14) with Z = 2. The refined lattice parameters of CaTh(PO4)2 are a = 6.7085(8) Å, b = 6.9160(6) Å, c = 6.4152(6) Å, and β = 103.71(1)° with best fit parameters R wp = 4.87%, R p = 3.69% and R B = 3.99%. For CaNp(PO4)2, we obtained a = 6.6509(5) Å, b = 6.8390(3) Å, c = 6.3537(8) Å, and β = 104.12(6)° and R wp = 6.74%, R p = 5.23%, and R B = 6.05%. The results indicate significant distortions of bond length and angles of the PO4 tetrahedra in CaTh(PO4)2 and to a lesser extent in CaNp(PO4)2. The structural distortions were confirmed by Raman spectroscopy of CaTh(PO4)2. A comparison with the isostructural compounds LnPO4 (Ln = Ce and Sm) confirmed that the substitution of the large rare earth trivalent cations with Ca2+ and Th4+ introduces a distortion of the PO4 tetrahedra.  相似文献   
37.
38.
The Monte Carlo method is used to generate parent stochastic discrete fracture network, from which a series of fractured rock samples of different sizes and orientations are extracted. The fracture network combined with a regular grid forms composite element mesh of the fractured rock sample, in which each composite element is composed of sub‐elements incised by fracture segments. The composite element method (CEM) for the seepage is implemented to obtain the nodal hydraulic potential as well as the seepage flow rates through the fractured rock samples. The application of CEM enables a large quantity of stochastic tests for the fractured rock samples because the pre‐process is facilitated greatly. By changing the sizes and orientations of the samples, the analysis of the seepage characteristics is realized to evaluate the variation of the permeability components, the existence of the permeability tensor and the representative element volume. The feasibility and effectiveness are illustrated in a numerical example. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
39.
Biaxial test simulations using a packing of polygonal particles   总被引:1,自引:0,他引:1  
The mechanical response of cohesionless granular materials under monotonic loading is studied by performing molecular dynamic simulations. The diversity of shapes of soil grains is modelled by using randomly generated convex polygons as granular particles. Results of the biaxial test obtained for dense and loose media show that samples achieve the same void ratio at large strains independent of their initial density state. This limit state resembles the so‐called critical state of soil mechanics, except for some stress fluctuations, which remain for large deformations. These fluctuations are studied at the micro‐mechanical level, by following the evolution of the co‐ordination number, force chains and the fraction of the sliding contacts of the sample. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
40.
We test the hypothesis that flexural isostatic compensation of the mass removed by enhanced Quaternary erosion is responsible for uplift of the Western European Alps and their forelands. We use two well‐preserved and well‐dated (1.8 Ma) abandonment surfaces of foreland basin remnants in SE France (the Chambaran and Valensole plateaux) as passive benchmarks for tilting of the foreland. Estimating their initial slope from morphometric scaling relationships, we determine bulk post‐depositional tilting of 0.5–0.8% for these surfaces. The calculated isostatic response of the Alpine lithosphere to erosional unloading, using the method recently proposed by Champagnac et al. [Geology 35 (2007) 195–198] , yields a predicted tilting of 0.3–0.4% in the considered areas, explaining approximately half of the determined post‐depositional tilting. Such long‐term deformation being insensitive to cyclic loading/unloading because of glaciations, we suspect the other half to be related to as yet undetermined long‐wavelength and long‐lived tectonic process(es).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号