首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
测绘学   5篇
大气科学   8篇
地球物理   4篇
地质学   11篇
海洋学   4篇
天文学   2篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   4篇
  2011年   1篇
  2010年   4篇
  2009年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2000年   1篇
  1997年   3篇
  1996年   2篇
  1993年   1篇
  1988年   1篇
  1987年   1篇
  1982年   1篇
排序方式: 共有34条查询结果,搜索用时 46 毫秒
21.
The Regional Integrated Multi-Hazard Early Warning System (RIMES), an international, intergovernmental organization based in Thailand is engaged in disaster risk reduction over the Asia–Pacific region through early warning information. In this paper, RIMES’ customized Weather Research Forecast (WRF) model has been used to evaluate the simulations of cyclone Nargis which hit Myanmar on 2 May 2008, the most deadly severe weather event in the history of Myanmar. The model covers a domain of 35oE to 145oE in the east—west direction and 12oS to 40oN in the north—south direction in order to cover Asia and east Africa with a resolution of 9?km in the horizontal and 28 vertical levels. The initial and boundary conditions for the simulations were provided by the National Center for Environmental Prediction-Global Forecast System (NCEP-GFS) available at 1o lon/lat resolution. An attempt is being made to critically evaluate the simulation of cyclone Nargis by seven set of simulations in terms of track, intensity and landfall time of the cyclone. The seven sets of model simulations were initialized every 12?h starting from 0000 UTC 28 April to 01 May 2008. Tropical Rainfall Measurement Mission (TRMM) precipitation (mm) is used to evaluate the performance of the simulations of heavy rainfall associated with the tropical cyclone. The track and intensity of the simulated cyclone are compared by making use of Joint Typhoon Warning Center (JTWC) data sets. The results indicate that the landfall time, the distribution and intensity of the rainfall, pressure and wind field are well simulated as compared with the JTWC estimates. The average landfall track error for all seven simulations was 64?km with an average time error of about 5?h. The average intensity error of central pressure in all the simulations were found out to be approximately 6?hPa more than the JTWC estimates and in the case of wind, the simulations under predicted it by an average of 12?m?s?1.  相似文献   
22.
Numerical experiment with improved boundary layer physics has been performed to study the Planetary Boundary Layer (PBL) characteristics over the monsoon trough region. Details of the evolution and structure of the associated boundary layer processes in the monsoon trough and adjoining oceanic regions are examined by integrating the model up to a period of 48 hours. The model used for this study is a high resolution primitive equation, one with 0·5o latitude/longitude horizontal resolution and 16 levels in the vertical (7 levels in the PBL). The boundary layer treatment in the model is based on the Monin-Obukhov similarity theory for the surface layer and Turbulent Kinetic Energy (TKE) formulation based onE-ε approach for the mixed layer. The model is integrated using the FGGE level IIIb analysis of European Centre for Medium Range Weather Forecasts (ECMWF), U.K. The study shows that the diurnal variation of TKE over land is a dominant feature comparing with that over the ocean. Along the monsoon trough region, TKE increases from the eastern end to the western side which is mainly associated with the enhancement of sensible heat flux as we move from the eastern wet land to the western desert sector. It may be noted that the low level wind maximum, which is a characteristic feature over the monsoon region, is well simulated by this improved model physics.  相似文献   
23.
The relative proportions of asteroidal and cometary materials in the zodiacal cloud is an ongoing debate. The determination of the asteroidal component is constrained through the study of the Solar System dust bands (the fine-structure component superimposed on the broad background cloud), since they have been confidently linked to specific, young, asteroid families in the main belt. The disruptions that produce these families also result in the injection of dust into the cloud and thus hold the key to determining at least a minimum value for the asteroidal contribution to the zodiacal cloud. There are currently known to be at least three dust band pairs, one at approximately 9.35° associated with the Veritas family and two central band pairs near the ecliptic, one of which is associated with the Karin subcluster of the Koronis family. Through careful co-adding of almost all the pole-to-pole intensity scans in the mid-infrared wavebands of the Infrared Astronomical Satellite (IRAS) data set, we find strong evidence for a partial Solar System dust band, that is, a very young dust band in the process of formation, at approximately 17° latitude. We think this is a confirmation of the M/N partial band pair first suggested by Sykes [1988. IRAS observations of extended zodiacal structures. Astrophys. J. 334, L55-L58]. The new dust band appears at some but not all ecliptic longitudes, as expected for a young, partially formed dust band. We present preliminary modeling of the new, partial dust band which allows us to put constraints on the age of the disruption event, the inclination and node of the parent body at the time of disruption, and the quantity of dust injected into the zodiacal cloud.  相似文献   
24.
25.
This paper describes measurements of sediments during the 2000-2001 Asian Seas International Acoustic Experiment in the East China Sea. A number of techniques were used to infer properties of these sediments, including gravity and piston cores, subbottom profiling using a water gun, long-range sediment tomography, and in situ measurement of conductivity. Historical data from echosounder records and cores showed two regions of surficial sediments in the experimental area: a silty area to the west and a sandy area to the east. The tomography, cores, and water-gun measurements confirm the two surficial sediment regions seen in the historical data and also indicate that the subbottom structure at the experimental site consists of a thin (0-3 m thick) layer of sandy sediment directly beneath the sea floor. Below this layer, there is an extensive package of sediment with relatively uniform acoustic attributes. Core analysis shows that the surface sediment layer varies in compressional wave speed from a low near 1600 m/s in the west side of the experiment area to 1660 m/s in the east side of the experiment area. Long-range sediment tomography inversions show a similar spatial variation in the surface layer properties. In addition, the layer thickness as determined from tomography is consistent with the estimates from subbottom profiling.  相似文献   
26.
27.
To demonstrate the capabilities of remote sensing and Geographic Information System (GIS) techniques for groundwater resources development in hard rock terrains, specifically for the demarcation of suitable sites for artificial recharge of groundwater aquifers, a study was carried out in the Kallar Basin, which is located in parts of the Salem and Tiruchirapalli districts, Tamil Nadu, India. Thematic maps defining lithology, lineaments, landforms, landuse, drainage density, thickness of weathered zone, thickness of fractured zone, hydrological soils, and well yield were prepared from data collected by the Indian Remote Sensing Satellite (IRS) -1C and by conventional methods. All the thematic layers were integrated using a GIS-based model developed specifically for this purpose, enabling a map showing artificial recharge zones to be generated. The exact type of artificial recharge structure, eg, check dam, nallabund, gully plugging and percolation pond, suitable for replenishing groundwater was identified by superposing a drainage network map over an artificial recharge zones map. The GIS-based demarcation of artificial zones developed in the study was based on logical conditions and reasoning, so that the same techniques (with appropriate modifications) could be adopted elsewhere, especially in hard rock terrain, where the occurrence of groundwater is restricted and subject to greater complexity.  相似文献   
28.
Bulk, first-order and turbulent kinetic energy (TKE) closure schemes are used to parameterise the boundary-layer physics in a high resolution, limited area model. The model was used to simulate the summer monsoon circulations over India. The domain selected included the monsoon trough over northern India, a region of mesoscale convection. A monsoon depression was present at the time of the simulation. The results indicate that the TKE closure scheme combined with the Monin–Obukhov surface-layer similarity relation provided the best 48-hour simulation of the circulation and the rainfall associated with the monsoon depression.  相似文献   
29.
In the present study an attempt has been made to estimate acreage and condition of tea plantations by using satellite based digital remotely sensed data in visible, near infra-red and middle infra-red spectral regions, in the Nilgiri district of Tamilnadu state. Landsat MSS and TM data, acquired on Dec. 26, 1990 were used in the analysis, Different spectral band combinations, Landsat MSS (1234), TM (1234), TM (2345) and TM (123457) were used for identification of tea plantations. District-boundary-overlaying approach with complete enumeration of digital data was used for estimation of tea acreages. Condition assessment of tea plantations is based on the Greenness Index. Use of Landsat MSS data resulted in an underestimation of area under tea whereas the acreages estimated by using TM spectral band combinations 1234 and 2345 compared closely with the estimates of Department of Horticulture (DOH). The distribution pattern of various condition classes of tea plantations compared well with the prevailing ground conditions as observed during post-classification field survey in September 1992 in the district.  相似文献   
30.
We have studied long-term changes in tropospheric NO2 over South India using ground-based observations, and GOME and OMI satellite data. We have found that unlike urban regions, the region between Eastern and Western Ghat mountain ranges experiences statistically significant decreasing trend. There are few ground-based observatories to verify satellite based trends for rural regions. However, using a past study and recent measurements we show a statistically significant decrease in NOX and O3 mixing ratio over a rural location (Gadanki; 13.48° N, 79.18° E) in South India. In the ground-based records of surface NOX, the concentration during 2010–11 is found to be lower by 0.9 ppbv which is nearly 60 % of the values observed during 1994–95. Small but statistically significant decrease in noon-time peak ozone concentration is also observed. Noon-time peak ozone concentration has decreased from 34?±?13 ppbv during 1993–96 to 30?±?15 ppbv during 2010–11. NOX mixing ratios are very low over Gadanki. In spite of low NOX values (0.5 to 2 ppbv during 2010–11), ozone mixing ratios are not significantly low compared to many cities with high NOX. The monthly mean ozone mixing ratio varies from 9 ppbv to 37 ppbv with high values during Spring and low values during late Summer. Using a box-model, we show that presence of VOCs is also very important in addition to NOX in determining ozone levels in rural environment and to explain its seasonal cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号