首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   3篇
大气科学   3篇
地球物理   12篇
地质学   5篇
海洋学   2篇
天文学   13篇
  2020年   1篇
  2017年   1篇
  2016年   4篇
  2015年   4篇
  2013年   1篇
  2012年   1篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2004年   2篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1991年   1篇
  1989年   2篇
  1985年   1篇
排序方式: 共有35条查询结果,搜索用时 31 毫秒
31.
The ground motions induced by an earthquake are expressed by the histories of acceleration, velocity and displacement. It is generally assumed that the acceleration, velocity and displacement histories contain identical information, i.e. the velocity history is obtained by integration of the acceleration history, and the displacement history is obtained by integration of the velocity history. However, this is not always true. In conventional processing of ground motion histories, additional corrections are applied to the velocity and displacement histories, which are not reflected in the acceleration history. As a result, the three ground motion histories contain slightly different information, or they are not fully compatible with one another. The structural response computed from the acceleration history, therefore, does not correspond to the processed velocity and displacement histories. The purpose of this paper is to underscore the engineering difficulties associated with incompatible histories and to provide a method of computing the response spectrum, which is compatible with the acceleration, velocity and displacement histories. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
32.
The application of Fourier transform infrared (FTIR) spectroscopy to the analysis of the hydroxyl groups bands' intensities of montmorillonite from Texas shows four regions of intensity loss rate for thermally shocked samples at 290<T<1100 K for 24 h. The first three regions are associated with the dehydroxylation process; while the fourth region suggests the loss of the remaining (~10%) hydroxyls via thermal dissociation into hydrogen atoms and oxygen centers. The dehydroxylation process appears to be homogeneous with adjacent trans OH ions interacting to form H2O molecules below the hexagonal hole or cavity. The vibrational analysis of the stretching and bending modes of water and hydroxyl groups at 290<T<553 K indicates not only that water is desorbed in this range, resulting in the perturbation of the octahedral hydroxyl structure due to the close approach of exchangeable cations to the hexagonal holes, but also that surface hydroxyls and AlFe3+-OH groups are dehydroxylated. AT 553<T< 773 K, the intensity loss of AlAl-OH and AlMg-OH groups almost varies linearly as a function of thermal shock temperature with the AlMg-OH vibration disappearing at T> 673 K. However, what is surprising is the persistence of very weak water stretching (~3470 cm?1) and bending (~1628 cm?1) vibrations at 553<T<773 K. It is speculated that this water, formed because of dehydroxylation, is trapped in the hexagonal cavities of the dehydrated montmorillonite lattice. However, conclusive evidence will require surface-sensitive spectroscopic measurements as this water could also be adsorbed on the external surfaces of processed samples. In the range 773<T<823 K, the main dehydroxylation of the AlAl-OH group results, and this reaction induces structural transformations in the montmorillonite lattice. FTIR measurements at 803 K for 0<t< 25 h were used to determine the kinetics mechanism of dehydroxylation in montmorillonite from Texas. The experimental data was tested, using diffusion controlled as well as six decomposition models to ascertain the kinetics mechanism of the AlAl-OH group's dehydroxylation. It appears that the dehydroxylation process can be described by the contracting spherical movement model rather than by a diffusion controlled model, suggesting surface nucleation, growth over the surface, and then advancement of the dehydroxylated/hydroxylated interface toward the center of the montmorillonite particles.  相似文献   
33.
Recently a new class of numerical integration methods — mixed variable symplectic integrators — has been introduced for studying long-term evolution in the conservative gravitational few-body problem. These integrators are an order of magnitude faster than conventional ODE integration methods. Here we present a simple modification of this method to include small non-gravitational forces. The new scheme provides a similar advantage of computational speed for a larger class of problems in Solar System dynamics.  相似文献   
34.
35.
Seagrass meadow characteristics, including distribution, shape, size and within‐meadow architectural features, may be influenced by various physical factors, including hydrodynamic forces. However, such influences have hardly been assessed for meadows of the ecologically important and endemic Mediterranean seagrass Posidonia oceanica. The distribution of P. oceanica meadows at five sites in the Maltese Islands was mapped to a depth of c. 15 m using a combination of aerial photography and SCUBA diving surveys. Estimates of wind‐generated wave energy and energy attenuated by depth were computed using the hydrodynamic model WEMo (Wave Exposure Model). Metrics for P. oceanica landscape features were calculated using FRAGSTATS for replicate 2500 m2 subsamples taken from the seagrass habitat maps in order to explore the influence of wave dynamics at the landscape scale. Data on within‐meadow architectural attributes were collected from five sites and analysed for relationships with wave energy. The results indicate that landscape and architectural features of P. oceanica meadows located within the 6–11 m depth range are significantly influenced by wave climate. Posidonia oceanica meadows tend to be patchier and have low overall cover, more complex patch shapes and reduced within‐patch architectural complexity along a wave exposure gradient from low to high energy. The findings from the present study provide new insight into the influence of hydrodynamic factors on the natural dynamism of P. oceanica meadow landscape and architecture, which has implications for the conservation and management of the habitat.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号