首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   622篇
  免费   44篇
  国内免费   13篇
测绘学   21篇
大气科学   100篇
地球物理   152篇
地质学   197篇
海洋学   48篇
天文学   95篇
综合类   1篇
自然地理   65篇
  2024年   1篇
  2022年   5篇
  2021年   22篇
  2020年   19篇
  2019年   16篇
  2018年   20篇
  2017年   25篇
  2016年   54篇
  2015年   31篇
  2014年   30篇
  2013年   46篇
  2012年   52篇
  2011年   38篇
  2010年   42篇
  2009年   51篇
  2008年   33篇
  2007年   31篇
  2006年   34篇
  2005年   26篇
  2004年   19篇
  2003年   14篇
  2002年   6篇
  2001年   13篇
  2000年   13篇
  1999年   7篇
  1998年   8篇
  1997年   7篇
  1996年   3篇
  1994年   2篇
  1993年   2篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1980年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有679条查询结果,搜索用时 0 毫秒
101.
Testing the accuracy of 3D modelling algorithms used for geological applications is extremely difficult as model results cannot be easily validated. This paper presents a new approach to evaluate the effectiveness of common interpolation algorithms used in 3D subsurface modelling, utilizing four synthetic grids to represent subsurface environments of varying geological complexity. The four grids are modelled with Inverse Distance Weighting and Ordinary Kriging, using data extracted from the synthetic grids in different spatial distribution patterns (regular, random, clustered and sparse), and with different numbers of data points (100, 256, 676 and 1,600). Utilizing synthetic grids for this evaluation allows quantitative statistical assessment of the accuracy of both interpolation algorithms in a variety of sampling conditions. Data distribution proved to be an important factor; as in many geological situations, relatively small numbers of randomly distributed data points can generate more accurate 3D models than larger amounts of clustered data. This study provides insight for optimizing the quantity and distribution of data required to accurately and cost-effectively interpolate subsurface units of varying complexity.  相似文献   
102.
大气环境卫星温室气体和气溶胶协同观测综述   总被引:1,自引:0,他引:1  
人类排放的温室气体和气溶胶是造成全球气候变暖和大气环境恶化的主要因素,也是大气环境卫星遥感的核心探测目标。与传统的单一探测目标卫星相比,实现同平台的大气温室气体和气溶胶协同监测,对于提高温室气体卫星反演精度、改善“自上而下”碳源汇估算、提升温室气体和气溶胶的人为/自然源区分能力具有重要意义,也是各国航天机构积极发展的空间探测手段。本文对欧、日、中、美等具备温室气体和气溶胶协同监测能力的卫星进行系统的介绍,包括卫星平台、传感器、处理算法和质控验证。按照卫星监测任务和传感器用途,将其分为大气综合探测卫星和温室气体监测卫星两大类,并从碳中和行动和大气环境综合治理等需求出发,提出温室气体和气溶胶协同观测星座(GACOC)的概念及其发展方向,包括主被动卫星组网观测、温室气体和气溶胶高精度联合反演算法、人为排放源识别和定量监测等应用。  相似文献   
103.
Engineering projects that require deformation monitoring frequently utilize geodetic sensors to measure displacements of target points located in the deformation zone. In situations where control stations and targets are separated by a kilometer or more, GPS can offer higher precision position updates at more frequent intervals than can normally be achieved using total station technology. For large-scale deformation projects requiring the highest precision, it is therefore advisable to use a combination of the two sensors. In response to the need for high precision, continuous GPS position updates in harsh deformation monitoring environments, a software has been developed that employs triple-differenced carrier-phase measurements in a delayed-state Kalman filter. Two data sets were analyzed to test the capabilities of the software. In the first test, a GPS antenna was displaced using a translation stage to mimic slow deformation. In the second test, data collected at a large open pit mine were processed. It was shown that the delayed-state Kalman filter developed could detect millimeter-level displacements of a GPS antenna. The actual precision attained depends upon the amount of process noise infused at each epoch to accommodate the antenna displacements. Higher process noise values result in quicker detection times, but at the same time increase the noise in the solutions. A slow, 25 mm displacement was detected within 30 min of the full displacement with sigma values in E, N and U of ±10 mm or better. The same displacement could also be detected in less than 5 h with sigma values in E, N and U of ±5 mm or better. The software works best for detecting long period deformations (e.g., 20 mm per day or less) for which sigma values of 1–2 mm are attained in all three solution components. It was also shown that the triple-differenced carrier-phase observation can be used to significantly reduce the effects of residual tropospheric delay that would normally plague double-differenced observations in harsh GPS environments.
Don KimEmail:
  相似文献   
104.
In recent years the importance of real-time positioning and navigation with the Global Positioning System (GPS) has grown rapidly. Starting from the establishment of differential GPS (DGPS) reference stations for marine and land navigation, new users and applications have emerged that resulted in a high demand for the establishment of a high-density network of reference stations around the world. Many countries have established their own DGPS service, which is either governmentally or commercially owned. These services are referred to as Local Area DGPS Systems (LADGPS). However, the costs for the establishment and maintenance of a dense network of reference stations are very high. Therefore Wide Area DGPS Systems (WADGPS) are being developed to overcome the main drawbacks of LADGPS. In this case, only a few reference stations are used to cover a large area, such s a continent like Europe. To achieve high positioning accuracies, real-time modeling of the main error sources for long-range baselines is required as errors in the satellite orbit and ionospheric refraction do not cancel entirely in double differencing. In this article, a real-time correction model based on the Kalman filter for WADGPS and networked LADGPS services is discussed and results of field tests in a WADGPS network in Europe are presented. ? 2000 John Wiley & Sons, Inc.  相似文献   
105.
Long-term experimental watershed studies have significantly influenced our global understanding of hydrological processes. The discovery and characterization of how stream water quantity and quality respond to a changing environment (e.g. land-use change, acidic deposition) has only been possible due to the establishment of catchments devoted to long-term study. One such catchment is the Fernow Experimental Forest (FEF) located in the headwaters of the Appalachian Mountains in West Virginia, a region that provides essential freshwater ecosystem services to eastern and mid-western United States communities. Established in 1934, the FEF is among the earliest experimental watershed studies in the Eastern United States that continues to address emergent challenges to forest ecosystems, including climate change and other threats to forest health. This data note describes available data and presents some findings from more than 50 years of hydrologic research at the FEF. During the first few decades, research at the FEF focused on the relationship between forest management and hydrological processes—especially those related to the overall water balance. Later, research included the examination of interactions between hydrology and soil erosion, biogeochemistry, N-saturation, and acid deposition. Hydro-climatologic and water quality datasets from long-term measurements and data from short-duration studies are publicly available to provide new insights and foster collaborations that will continue to advance our understanding of hydrology in forested headwater catchments. As a result of its rich history of research and abundance of long-term data, the FEF is positioned to continue to advance understanding of forest ecosystems in a time of unprecedented change.  相似文献   
106.
Stream and shallow groundwater responses to rainfall are characterized by high spatial variability, but hydrologic response variability across small, agro-forested sub-catchments remains poorly understood. Conceivably, improved understanding in this regard will result in agricultural practices that more effectively limit nutrient runoff, erosion, and pollutant transport. Terrestrial hydrologic response approaches can provide valuable information on stream-aquifer connectivity in these mixed-use watersheds. A study was implemented, including eight stream and co-located shallow groundwater monitoring sites, in a small sub-catchment of the Chesapeake Bay watershed in the Northeast, USA to advance this ongoing need. During the study period, 100 precipitation-receiving days (i.e., 24-hour periods, midnight to midnight) were observed. On average, the groundwater table responded more to precipitation than stream stage (level change of 0.03 vs. 0.01 m and rainfall-normalized level change estimate of 3.81 vs. 3.37). Median stream stage responses, groundwater table responses, and response ratios were significantly different between sub-catchments (n = 8; p < 0.001). Study area average precipitation thresholds for runoff and shallow groundwater flow were 2.8 and 0.6 cm, respectively. Individual sub-catchment thresholds ranged from 0.5 to 2.8 cm for runoff and 0.2 to 1.3 cm for shallow groundwater flow. Normalized response lag times between the stream and shallow groundwater ranged from −0.50 to 3.90 s·cm−1, indicating that stormflow in one stream section was regulated by groundwater flow during the period of study. The observed differences in hydrologic responses to precipitation advance future modelling efforts by providing examples of how terrestrial groundwater response methods can be used to investigate sub-catchment spatial variability in stream-aquifer gradients with co-located shallow groundwater and stream stage data. Additionally, results demonstrate asynchronous stream and shallow groundwater responses on precipitation-receiving days, which may hold important implications for modelling hydrologic and biogeochemical fate and transport processes in small, agro-forested catchments.  相似文献   
107.
The Powder River Basin (PRB) of Wyoming and Montana contains significant coal and coal bed natural gas (CBNG) resources. CBNG extraction requires the production of large volumes of water, much of which is discharged into existing drainages. Compared to surface waters, the CBNG produced water is high in sodium relative to calcium and magnesium, elevating the sodium adsorption ratio (SAR). To mitigate the possible impact this produced water may have on the quality of surface water used for irrigation, the State of Montana passed water anti‐degradation legislation, which could affect CBNG production in Wyoming. In this study, we sought to determine the proportion of CBNG produced water discharged to tributaries that reaches the Powder River by implementing a four end‐member mixing model within a Bayesian statistical framework. The model accounts for the 87Sr/86Sr, δ13CDIC, [Sr] and [DIC] of CBNG produced water and surface water interacting with the three primary lithologies exposed in the PRB. The model estimates the relative contribution of the end members to the river water, while incorporating uncertainty associated with measurement and process error. Model results confirm that both of the tributaries associated with high CBNG activity are mostly composed of CBNG produced water (70–100%). The model indicates that up to 50% of the Powder River is composed of CBNG produced water downstream from the CBNG tributaries, decreasing with distance by dilution from non‐CBNG impacted tributaries from the point sources to ~10–20% at the Montana border. This amount of CBNG produced water does not significantly affect the SAR or electrical conductivity of the Powder River in Montana. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
108.
Gurdak JJ  McCray JE  Thyne G  Qi SL 《Ground water》2007,45(3):348-361
A methodology is proposed to quantify prediction uncertainty associated with ground water vulnerability models that were developed through an approach that coupled multivariate logistic regression with a geographic information system (GIS). This method uses Latin hypercube sampling (LHS) to illustrate the propagation of input error and estimate uncertainty associated with the logistic regression predictions of ground water vulnerability. Central to the proposed method is the assumption that prediction uncertainty in ground water vulnerability models is a function of input error propagation from uncertainty in the estimated logistic regression model coefficients (model error) and the values of explanatory variables represented in the GIS (data error). Input probability distributions that represent both model and data error sources of uncertainty were simultaneously sampled using a Latin hypercube approach with logistic regression calculations of probability of elevated nonpoint source contaminants in ground water. The resulting probability distribution represents the prediction intervals and associated uncertainty of the ground water vulnerability predictions. The method is illustrated through a ground water vulnerability assessment of the High Plains regional aquifer. Results of the LHS simulations reveal significant prediction uncertainties that vary spatially across the regional aquifer. Additionally, the proposed method enables a spatial deconstruction of the prediction uncertainty that can lead to improved prediction of ground water vulnerability.  相似文献   
109.
The Tibesti massif, one of the most prominent features of the Sahara desert, covers an area of some 100,000 km2. Though largely absent from scientific inquiry for several decades, it is one of the world’s major volcanic provinces, and a key example of continental hot spot volcanism. The intense activity of the TVP began as early as the Oligocene, though the major products that mark its surface date from Lower Miocene to Quaternary (Furon (Geology of Africa. Oliver & Boyd, Edinburgh (trans 1963, orig French 1960), pp 1–377, 1963)); Gourgaud and Vincent (J Volcanol Geotherm Res 129:261–290, 2004). We present here a new and consistent analysis of each of the main components of the Tibesti Volcanic Province (TVP), based on examination of multispectral imagery and digital elevation data acquired from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Our synthesis of these individual surveys shows that the TVP is made up of several shield volcanoes (up to 80 km diameter) with large-scale calderas, extensive lava plateaux and flow fields, widespread tephra deposits, and a highly varied structural relief. We compare morphometric characteristics of the major TVP structures with other hot spot volcanoes (the Hawaiian Islands, the Galápagos Islands, the Canary and Cape Verdes archipelagos, Jebel Marra (western Sudan), and Martian volcanoes), and consider the implications of differing tectonic setting (continental versus oceanic), the thickness and velocity of the lithosphere, the relative sizes of main volcanic features (e.g. summit calderas, steep slopes at summit regions), and the extent and diversity of volcanic features. These comparisons reveal morphologic similarities between volcanism in the Tibesti, the Galápagos, and Western Sudan but also some distinct features of the TVP. Additionally, we find that a relatively haphazard spatial development of the TVP has occurred, with volcanism initially appearing in the Central TVP and subsequently migrating to both the Eastern and Western TVP regions. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   
110.
The purple-tipped sea urchin, Psammechinus miliaris, was exposed to artificially acidified seawater treatments (pH(w) 6.16, 6.63 or 7.44) over a period of 8 days. Urchin mortality of 100% was observed at pH(w) 6.16 after 7 days and coincided with a pronounced hypercapnia in the coelomic fluid producing an irrecoverable acidosis. Coelomic fluid acid-base measures showed that an accumulation of CO(2) and a significant reduction in pH occurred in all treatments compared with controls. Bicarbonate buffering was employed in each case, reducing the resultant acidosis, but compensation was incomplete even under moderate environmental hypercapnia. Significant test dissolution was inferred from observable increases in the Mg(2+) concentration of the coelomic fluid under all pH treatments. We show that a chronic reduction of surface water pH to below 7.5 would be severely detrimental to the acid-base balance of this predominantly intertidal species; despite its ability to tolerate fluctuations in pCO(2) and pH in the rock pool environment. The absence of respiratory pigment (or any substantial protein in the coelomic fluid), a poor capacity for ionic regulation and dependency on a magnesium calcite test, make echinoids particularly vulnerable to anthropogenic acidification. Geological sequestration leaks may result in dramatic localised pH reductions, e.g. pH 5.8. P. miliaris is intolerant of pH 6.16 seawater and significant mortality is seen at pH 6.63.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号