首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   1篇
测绘学   9篇
大气科学   8篇
地球物理   77篇
地质学   53篇
天文学   17篇
自然地理   3篇
  2018年   5篇
  2017年   3篇
  2016年   7篇
  2015年   2篇
  2014年   4篇
  2013年   7篇
  2011年   6篇
  2010年   4篇
  2009年   8篇
  2008年   3篇
  2007年   2篇
  2005年   2篇
  2004年   5篇
  2001年   2篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1986年   5篇
  1985年   2篇
  1984年   5篇
  1983年   6篇
  1982年   3篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   4篇
  1976年   4篇
  1975年   2篇
  1973年   6篇
  1972年   2篇
  1971年   3篇
  1970年   2篇
  1969年   2篇
  1968年   2篇
  1967年   2篇
  1966年   2篇
  1964年   3篇
  1963年   1篇
  1961年   3篇
  1960年   3篇
  1959年   1篇
  1957年   1篇
  1949年   1篇
排序方式: 共有167条查询结果,搜索用时 765 毫秒
131.
Those factors controlling the weathering and erosion of sandstone on the field scale are still not well understood. In this study, a specific sandstone overhang (and its surroundings) with artificially induced and extremely high erosion rates was subjected to a complex investigation. Contrast between the erosion rate of the wet and dry portions of the same cliff enabled isolation of the factors responsible for rapid sandstone retreat. Erosion rates, moisture, and salt content, as well as suction were monitored in the field. Mineral phases and water chemistry were analyzed. The measurement of tensile strength, laboratory frost weathering tests, and numerical modeling of stress were performed. The acquired data show that an increase of moisture content in pores in the area of the studied overhang decreased tensile strength of the sandstone to 14% of its dry value, and increases the sandstone weathering and erosion rate, by nearly four orders of magnitude, compared to the same sandstone under natural moisture conditions outside of the cliff area. Consequently, frost weathering, in combination with wetting weakening was found to play a major role in weathering/erosion of the sandstone cliff and overhang. Frost weathering rate in both the laboratory and field increases up to 15 times with decreasing gravity‐induced stress. The results also indicate that sandstone landforms in temperate climates may potentially develop very rapidly if the pore space is nearly saturated with water, and will later remain relatively stable when the moisture content decreases. As a general implication, it is suggested that overhangs in Central Europe (and elsewhere) might be the result of rapid frost weathering of nearly saturated sandstone during the Last Glacial. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
132.
Neogene to Quaternary volcanic/magmatic activity in the Carpathian-Pannonian Region (CPR) occurred between 21 and 0.1 Ma with a distinct migration in time from west to east. It shows a diverse compositional variation in response to a complex interplay of subduction with rollback, back-arc extension, collision, slab break-off, delamination, strike-slip tectonics and microplate rotations, as well as in response to further evolution of magmas in the crustal environment by processes of differentiation, crustal contamination, anatexis and magma mixing. Since most of the primary volcanic forms have been affected by erosion, especially in areas of post-volcanic uplift, based on the level of erosion we distinguish: (1) areas eroded to the basement level, where paleovolcanic reconstruction is not possible; (2) deeply eroded volcanic forms with secondary morphology and possible paleovolcanic reconstruction; (3) eroded volcanic forms with remnants of original morphology preserved; and (4) the least eroded volcanic forms with original morphology quite well preserved. The large variety of volcanic forms present in the area can be grouped in a) monogenetic volcanoes and b) polygenetic volcanoes and their subsurface/intrusive counterparts that belong to various rock series found in the CPR such as calc-alkaline magmatic rock-types (felsic, intermediate and mafic varieties) and alkalic types including K-alkalic, shoshonitic, ultrapotassic and Na-alkalic. The following volcanic/subvolcanic forms have been identified: (i) domes, shield volcanoes, effusive cones, pyroclastic cones, stratovolcanoes and calderas with associated intrusive bodies for intermediate and basic calclkaline volcanism; (ii) domes, calderas and ignimbrite/ash-flow fields for felsic calc-alkaline volcanism and (iii) dome flows, shield volcanoes, maars, tuffcone/tuff-rings, scoria-cones with or without related lava flow/field and their erosional or subsurface forms (necks/ plugs, dykes, shallow intrusions, diatreme, lava lake) for various types of K- and Na-alkalic and ultra-potassic magmatism. Finally, we provide a summary of the eruptive history and distribution of volcanic forms in the CPR using several sub-region schemes.  相似文献   
133.
International Journal of Earth Sciences - One of the defining characteristics of the basaltic rocks from the Early Jurassic Eastern North America (ENA) sub-province of the Central Atlantic Magmatic...  相似文献   
134.
The central zone of the Miocene Štiavnica stratovolcano hosts several occurrences of Cu–Au skarn–porphyry mineralisation, related to granodiorite/quartz–diorite porphyry dyke clusters and stocks. Vysoká–Zlatno is the largest deposit (13.4 Mt at 0.52% Cu), with mineralised Mg–Ca exo- and endoskarns, developed at the prevolcanic basement level. The alteration pattern includes an internal K- and Na–Ca silicate zone, surrounded by phyllic and argillic zones, laterally grading into a propylitic zone. Fluid inclusions in quartz veinlets in the internal zone contain mostly saline brines with 31–70 wt.% NaCl eq. and temperatures of liquid–vapour homogenization (Th) of 186–575°C, indicating fluid heterogenisation. Garnet contains inclusions of variable salinity with 1–31 wt.% NaCl eq. and Th of 320–360°C. Quartz–chalcopyrite veinlets host mostly low-salinity fluid inclusions with 0–3 wt.% NaCl eq. and Th of 323–364°C. Data from sphalerite from the margin of the system indicate mixing with dilute and cooler fluids. The isotopic composition of fluids in equilibrium with K-alteration and most skarn minerals (both prograde and retrograde) indicates predominantly a magmatic origin (δ18Ofluid 2.5–12.3‰) with a minor meteoric component. Corresponding low δDfluid values are probably related to isotopic fractionation during exsolution of the fluid from crystallising magma in an open system. The data suggest the general pattern of a distant source of magmatic fluids that ascended above a zone of hydraulic fracturing below the temperature of ductile–brittle transition. The magma chamber at ∼5–6 km depth exsolved single-phase fluids, whose properties were controlled by changing PT conditions along their fluid paths. During early stages, ascending fluids display liquid–vapour immiscibility, followed by physical separation of both phases. Low-salinity liquid associated with ore veinlets probably represents a single-phase magmatic fluid/magmatic vapour which contracted into liquid upon its ascent.  相似文献   
135.
Estimates of solar radiation distribution in urban areas are often limited by the complexity of urban environments. These limitations arise from spatial structures such as buildings and trees that affect spatial and temporal distributions of solar fluxes over urban surfaces. The traditional solar radiation models implemented in GIS can address this problem only partially. They can be adequately used only for 2‐D surfaces such as terrain and rooftops. However, vertical surfaces, such as facades, require a 3‐D approach. This study presents a new 3‐D solar radiation model for urban areas represented by 3‐D city models. The v.sun module implemented in GRASS GIS is based on the existing solar radiation methodology used in the topographic r.sun model with a new capability to process 3‐D vector data representing complex urban environments. The calculation procedure is based on the combined vector‐voxel approach segmenting the 3‐D vector objects to smaller polygon elements according to a voxel data structure of the volume region. The shadowing effects of surrounding objects are considered using a unique shadowing algorithm. The proposed model has been applied to the sample urban area with results showing strong spatial and temporal variations of solar radiation flows over complex urban surfaces.  相似文献   
136.
The Czech Republic comprises two geologically diverse provinces. The western part is an ancient, long-stabilized crystalline (slowly uplifting) massif, the Bohemian Massif, whereas the eastern part is the younger and tectonically more mobile Carpathian Foredeep and the West Carpathian mountain ranges. The Late Cenozoic fluvial record, controlled in essence by cyclic climate-driven changes of the environment shows discernible differences in both provinces and, therefore, the paper deals with these separately. In the Bohemian Massif a regular development of terrace staircases is noted, making internally consistent correlation possible. Problems that remain open to debate include dating the start of fluvial terrace staircase development, and correlating the fluvial terraces with the succession of Scandinavian glaciations that have affected the northernmost Czech Republic. On the other hand, the fluvial records in the southeastern Czech Republic show significant lateral variations; thus, northern, central and southern Moravia are reviewed separately in this paper. The terrace system in northern Moravia formed in direct contact with the ice sheet during two Scandinavian glaciations, whereas only periglacial or extraglacial conditions developed further south. Nevertheless, the existence of the Main Terrace as an important stratigraphical index horizon allows the reliable correlation of the terrace systems of all the larger Moravian rivers, despite their fragmentary development.  相似文献   
137.
138.
Instead of the difficult concept of a three-dimensional curved space one can use two partial models of two-dimensional curved subspaces. If a two-dimensional subspace is curved the arbitrary angle of view must have a distorted shape which has in consequence an optical illusion. The distorted shape of ? must be corrected to the real angle1φ, valid in uncurved space according to the relation φ=1φf(ρ) where ρ is the central angle in theoretical sphere. If a two-dimensional subspace is just a spheric surface, the correction factor isf s (ρ)?ρ/sin ρ, appropriate to the angle distance ρ from observer to the observed object. In this way it is possible to explain why, in remote parts of the Universe, it was observed that their assumed components were receding at velocities larger than that of light, because the correction factorf(ρ) can change up to infinity for ρ=π. On the other hand there are many clustering of galaxies, because the correction factor for a hyperbolic spool space or internal part of annuloid is between zero and one: 0<f A (ρ))<1. Conception considered explains the cause of polarizing effect and interference phenomenon of light without assuming of components, too, but it is in contradiction with the recent interpretation of the spectrum. If we consider the Universe closed into itself due to curvature the existence of superluminal velocities is a undirect evidence for it. If we consider local hyperbolic spool spaces or that of annuloid, the existence of galaxies clustering is a needful but not sufficient condition for it.  相似文献   
139.
Summary The geophysical interpretation of satellite tracking residuals generally ignores the filtering effect of initial orbit correction on the true errors of the model. While the filtered information is usually regarded as lost, knowing the spectral characteristics of the filter is a great aid in the detailed interpretation of residuals, especially of global data sets. In this regard, we derive the filter characteristics (admittances) of orbit correction in the presence of geopotential-caused trajectory errors. We then apply the filter to determine the likely power of the lost radial information in crossover differences of sea heights determined from satellite altimetry or in the latitude lumped coefficients derived from them. For example, we find that resonant geopotential information with periods longer than the corrected orbit's arc length is largely lost in residual crossover data. Results are given for GEOSAT, ERS-1 and TOPEX/Poseidon in their Exact Repeat Missions, using calibrated variancecovariance matrices of the harmonic geopotential coefficients of several recent Earth gravity models. To prove that filtering is important, we first employed a simple cut of all perturbing terms with periods longer than the general tracking period (4 days for GEOSAT and ERS-1, and 10 days for TOPEX). But the cut is too crude a method from a theoretical viewpoint, and thus, we developed two new filters. A comparison of their admittances explains the differences (and sometimes anomalous behaviour) between them and the cut. Many numerical examples (single-satellite crossover errors and latitude lumped coefficient errors, as projected from the variance-covariance matrices) are presented.This paper has been presented during the Panel on Satellite Dynamics, at COSPAR 1994, in Hamburg, Germany.  相似文献   
140.
The inertial motion of the Sun around the barycentre, or centre of mass, of the Solar System has been employed as the base in searching for possible influence of the Solar System as a whole on climatic processes, especially on the changes in surface air temperature. A basic cycle of about 180–200 years and its higher harmonics up to 30 years have been found in surface air temperature of central Europe since 1753, established from 13 continuous instrumental time series. These periods correspond to the periods of solar inertial motion. In the first half of the 19th century, when the solar motion was chaotic, this temperature was about 0.75°C lower than that in the 20th (1940–50) and the 18th (1760–70) centuries. The mentioned decades of long-term temperature maxima coincide with the central decades of the ordered (trefoil) motion of the Sun. The temperatures in coastal Europe have been found to have slightly different properties, especially on a long-time scale. The periods of 35–45 years are significantly pronounced in the coastal Europe temperature spectrum. The chaotic motion of the Sun in the next decades could decrease both the solar forcing and global surface air temperature.This research was performed with support of the Grant Agency of the Czech Republic, Grant No. 205/93/0417, I. Charvátová: Prognosis of climate development in central Europe.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号