首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1487篇
  免费   56篇
  国内免费   3篇
测绘学   28篇
大气科学   147篇
地球物理   363篇
地质学   497篇
海洋学   138篇
天文学   210篇
自然地理   163篇
  2022年   8篇
  2021年   13篇
  2020年   22篇
  2019年   28篇
  2018年   20篇
  2017年   37篇
  2016年   66篇
  2015年   48篇
  2014年   56篇
  2013年   121篇
  2012年   46篇
  2011年   69篇
  2010年   71篇
  2009年   64篇
  2008年   55篇
  2007年   66篇
  2006年   40篇
  2005年   43篇
  2004年   36篇
  2003年   38篇
  2002年   58篇
  2001年   31篇
  2000年   24篇
  1999年   24篇
  1998年   25篇
  1997年   21篇
  1996年   20篇
  1995年   16篇
  1994年   21篇
  1992年   15篇
  1991年   15篇
  1990年   15篇
  1989年   10篇
  1988年   11篇
  1987年   11篇
  1986年   10篇
  1985年   17篇
  1984年   20篇
  1983年   19篇
  1982年   19篇
  1981年   13篇
  1980年   22篇
  1979年   17篇
  1978年   26篇
  1977年   16篇
  1976年   10篇
  1975年   9篇
  1974年   7篇
  1973年   13篇
  1971年   7篇
排序方式: 共有1546条查询结果,搜索用时 15 毫秒
191.
Source attribution of urban smog episodes caused by coal combustion   总被引:1,自引:0,他引:1  
Stable weather conditions together with extensive use of coal combustion often lead to severe smog episodes in certain urban environments, especially in Eastern Europe. In order to identify the specific sources that cause the smog episodes in such environments, and to better understand the mixing state and atmospheric processing of aerosols, both single particle and bulk chemical characterization analysis of aerosols were performed in Krakow, Poland, during winter 2005.Real-time measurements of the bulk PM10 aerosol during a severe smog episode (PM10 mass > 400 µg m− 3) showed a stable concentration of black carbon in the aerosol, and an increase in the sulphate and chlorine mass contributions towards the end of the episode. Chemical characterization of single particles further helped to identify residential coal burning as the main source that caused this severe smog episode, consisting of single particles with major signals for carbon with simultaneous absence of sulphate, chlorine and calcium. Particles from industrial coal combustion gained importance towards the end of that episode, after residential coal combustion was switched off, indicated by an increase of the percentage of sulphate and chlorine containing particles. Traffic was not a significant source during the severe smog episode. During a lighter smog episode, residential and industrial coal combustion was still predominant, with an increased contribution of traffic and processed/aged aerosols. On a clean day, particle classes containing nitrate were the most abundant. In addition, the aerosol was more internally mixed showing that there were more sources contributing to the total aerosol population.  相似文献   
192.
The Mars Exploration Rover, Spirit, landed on 4 January 2004, in a lava field in Gusev crater on Mars. Samples interpreted as olivine basalt have been investigated with Mössbauer spectroscopy and chemically with Alpha-particle-X-ray spectrometry (APXS).In this contribution we present the results of a new analysis of the Mössbauer spectra of selected rock targets in Gusev crater. The results show that the rock surfaces investigated are inhomogeneous, and show strong enhancement of olivine in the surface layer. By subtraction of the surface signal to obtain the spectrum of the true interior of the rock samples, the measurements show the usual correlation between olivine and iron oxides of olivine basalt.It is argued that the compositional changes observed are related to high temperature oxidation of the rocks, probably during solidification, a process known to lead to anomalously magnetic rocks. The rock Mazatzal is discussed in some detail, and it is suggested that the surface is covered with deposits rich in ferric iron rather than these ferric phases being due to oxidation of the rock. The fact that all the surfaces in this investigation show this same pattern, suggests that the dominating erosion of the surface layer of basaltic rocks at Gusev crater has been mechanical rather than chemical.  相似文献   
193.
We present results from modelling of quasi-simultaneous broad-band (radio through X-ray) observations of the Galactic stellar black hole (BH) transient X-ray binary (XRB) systems XTE J1118+480 and GX 339−4 using an irradiated disc + compact jet model. In addition to quantifying the physical properties of the jet, we have developed a new irradiated disc model which also constrains the geometry and temperature of the outer accretion disc by assuming a disc heated by viscous energy release and X-ray irradiation from the inner regions. For the source XTE J1118+480, which has better spectral coverage of the two in optical and near-infrared (OIR) wavelengths, we show that the entire broad-band continuum can be well described by an outflow-dominated model + an irradiated disc. The best-fitting radius of the outer edge of the disc is consistent with the Roche lobe geometry of the system, and the temperature of the outer edge of the accretion disc is similar to those found for other XRBs. Irradiation of the disc by the jet is found to be negligible for this source. For GX 339−4, the entire continuum is well described by the jet-dominated model only, with no disc component required. For the two XRBs, which have very different physical and orbital parameters and were in different accretion states during the observations, the sizes of the jet base are similar and both seem to prefer a high fraction of non-thermal electrons in the acceleration/shock region and a magnetically dominated plasma in the jet. These results, along with recent similar results from modelling other galactic XRBs and AGNs, may suggest an inherent unity in diversity in the geometric and radiative properties of compact jets from accreting black holes.  相似文献   
194.
Galileo Galilei’s use of the newly invented telescope for astronomical observation resulted immediately in epochal discoveries about the physical nature of celestial bodies, but the advantage for astrometry came much later. The quadrant and sextant were pre-telescopic instruments for measurement of large angles between stars, improved by Tycho Brahe in the years 1570–1590. Fitted with telescopic sights after 1660, such instruments were quite successful, especially in the hands of John Flamsteed. The meridian circle was a new type of astrometric instrument, already invented and used by Ole Rømer in about 1705, but it took a hundred years before it could fully take over. The centuries-long evolution of techniques is reviewed, including the use of photoelectric astrometry and space technology in the first astrometry satellite, Hipparcos, launched by ESA in 1989. Hipparcos made accurate measurement of large angles a million times more efficiently than could be done in about 1950 from the ground, and it will soon be followed by Gaia which is expected to be another one million times more efficient for optical astrometry.  相似文献   
195.
The ultramafic-hosted Logatchev Hydrothermal Field (LHF) at 15°N on the Mid-Atlantic Ridge and the Arctic Gakkel Ridge (GR) feature carbonate precipitates (aragonite, calcite, and dolomite) in voids and fractures within different types of host rocks. We present chemical and Sr isotopic compositions of these different carbonates to examine the conditions that led to their formation. Our data reveal that different processes have led to the precipitation of carbonates in the various settings. Seawater-like 87Sr/86Sr ratios for aragonite in serpentinites (0.70909 to 0.70917) from the LHF are similar to those of aragonite from the GR (0.70912 to 0.70917) and indicate aragonite precipitation from seawater at ambient conditions at both sites. Aragonite veins in sulfide breccias from LHF also have seawater-like Sr isotope compositions (0.70909 to 0.70915), however, their rare earth element (REE) patterns show a clear positive europium (Eu) anomaly indicative of a small (< 1%) hydrothermal contribution. In contrast to aragonite, dolomite from the LHF has precipitated at much higher temperatures (~ 100 °C), and yet its 87Sr/86Sr ratios (0.70896 to 0.70907) are only slightly lower than those of aragonite. Even higher temperatures are calculated for the precipitation of deformed calcite veins in serpentine–talc fault schists form north of the LHF. These calcites show unradiogenic 87Sr/86Sr ratios (0.70460 to 0.70499) indicative of precipitation from evolved hydrothermal fluids. A simple mixing model based on Sr mass balance and enthalpy conservation indicates strongly variable conditions of fluid mixing and heat transfers involved in carbonate formation. Dolomite precipitated from a mixture of 97% seawater and 3% hydrothermal fluid that should have had a temperature of approximately 14 °C assuming that no heat was transferred. The much higher apparent precipitation temperatures based on oxygen isotopes (~ 100 °C) may be indicative of conductive heating, probably of seawater prior to mixing. The hydrothermal calcite in the fault schist has precipitated from a mixture of 67% hydrothermal fluid and 33% seawater, which should have had an isenthalpic mixing temperature of ~ 250 °C. The significantly lower temperatures calculated from oxygen isotopes are likely due to conductive cooling of hydrothermal fluid discharging along faults. Rare earth element patterns corroborate the results of the mixing model, since the hydrothermal calcite, which formed from waters with the greatest hydrothermal contribution, has REE patterns that closely resemble those of vent fluids from the LHF. Our results demonstrate, for the first time, that (1) precipitation from pure seawater, (2) conductive heating of seawater, and (3) conductive cooling of hydrothermal fluids in the sub-seafloor all can lead to carbonate precipitation within a single ultramafic-hosted hydrothermal system.  相似文献   
196.
GETEMME (Gravity, Einstein??s Theory, and Exploration of the Martian Moons?? Environment), a mission which is being proposed in ESA??s Cosmic Vision program, shall be launched for Mars on a Soyuz Fregat in 2020. The spacecraft will initially rendezvous with Phobos and Deimos in order to carry out a comprehensive mapping and characterization of the two satellites and to deploy passive Laser retro-reflectors on their surfaces. In the second stage of the mission, the spacecraft will be transferred into a lower 1500-km Mars orbit, to carry out routine Laser range measurements to the reflectors on Phobos and Deimos. Also, asynchronous two-way Laser ranging measurements between the spacecraft and stations of the ILRS (International Laser Ranging Service) on Earth are foreseen. An onboard accelerometer will ensure a high accuracy for the spacecraft orbit determination. The inversion of all range and accelerometer data will allow us to determine or improve dramatically on a host of dynamic parameters of the Martian satellite system. From the complex motion and rotation of Phobos and Deimos we will obtain clues on internal structures and the origins of the satellites. Also, crucial data on the time-varying gravity field of Mars related to climate variation and internal structure will be obtained. Ranging measurements will also be essential to improve on several parameters in fundamental physics, such as the Post-Newtonian parameter ?? as well as time-rate changes of the gravitational constant and the Lense-Thirring effect. Measurements by GETEMME will firmly embed Mars and its satellites into the Solar System reference frame.  相似文献   
197.
A numerical study demonstrates the effects of flooding on subsurface hydrological flowpaths and nitrate removal in anoxic groundwater in riparian zones with a top peat layer. A series of two-dimensional numerical simulations with changing conditions for flow (steady state or transient with flooding), hydrogeology, denitrification, and duration of flooding demonstrate how flowpaths, residence times, and nitrate removal are affected. In periods with no flooding groundwater flows horizontally and discharges to the river through the riverbed. During periods with flooding, shallow groundwater is forced upwards as discharge through peat layers that often have more optimal conditions for denitrification caused by the presence of highly reactive organic matter. The contrast in hydraulic conductivity between the sand aquifer and the overlying peat layer, as well as the flooding duration, have a significant role in determining the degree of nitrate removal.  相似文献   
198.
Subarctic ecohydrological processes are changing rapidly, but detailed and integrated ecohydrological investigations are not as widespread as necessary. We introduce an integrated research catchment site (Pallas) for atmosphere, ecosystems, and ecohydrology studies in subarctic conditions in Finland that can be used for a new set of comparative catchment investigations. The Pallas site provides unique observational data and high-intensity field measurement datasets over long periods. The infrastructure for atmosphere- to landscape-scale research in ecosystem processes in a subarctic landscape has recently been complemented with detailed ecohydrological measurements. We identify three dominant processes in subarctic ecohydrology: (a) strong seasonality drives ecohydrological regimes, (b) limited dynamic storage causes rapid stream response to water inputs (snowmelt and intensive storms), and (c) hydrological state of the system regulates catchment-scale dissolved carbon dynamics and greenhouse (GHG) fluxes. Surface water and groundwater interactions play an important role in regulating catchment-scale carbon balances and ecosystem respiration within subarctic peatlands, particularly their spatial variability in the landscape. Based on our observations from Pallas, we highlight key research gaps in subarctic ecohydrology and propose several ways forward. We also demonstrate that the Pallas catchment meets the need for sustaining and pushing the boundaries of critical long-term integrated ecohydrological research in high-latitude environments.  相似文献   
199.
We compare stellar models produced by different stellar evolution codes for the CoRoT/ESTA project, comparing their global quantities, their physical structure, and their oscillation properties. We discuss the differences between models and identify the underlying reasons for these differences. The stellar models are representative of potential CoRoT targets. Overall we find very good agreement between the five different codes, but with some significant deviations. We find noticeable discrepancies (though still at the per cent level) that result from the handling of the equation of state, of the opacities and of the convective boundaries. The results of our work will be helpful in interpreting future asteroseismology results from CoRoT.  相似文献   
200.
One of the main obstacles for extracting the Cosmic Microwave Background (CMB) signal from observations in the mm-submm range is the foreground contamination by emission from Galactic components: mainly synchrotron, free-free and thermal dust emission. Due to the statistical nature of the intrinsic CMB signal it is essential to minimize the systematic errors in the CMB temperature determinations. Following the available knowledge of the spectral behavior of the Galactic foregrounds simple power law-like spectra have been assumed. The feasibility of using a simple neural network for extracting the CMB temperature signal from the combined signal CMB and the foregrounds has been investigated. As a specific example, we have analysed simulated data, as expected from the ESA Planck CMB mission. A simple multilayer perceptron neural network with 2 hidden layers can provide temperature estimates over more than 80 per cent of the sky that are to a high degree uncorrelated with the foreground signals. A single network will be able to cover the dynamic range of the Planck noise level over the entire sky.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号