全文获取类型
收费全文 | 288篇 |
免费 | 10篇 |
国内免费 | 3篇 |
专业分类
测绘学 | 9篇 |
大气科学 | 10篇 |
地球物理 | 55篇 |
地质学 | 117篇 |
海洋学 | 26篇 |
天文学 | 20篇 |
综合类 | 4篇 |
自然地理 | 60篇 |
出版年
2021年 | 3篇 |
2020年 | 4篇 |
2019年 | 5篇 |
2018年 | 4篇 |
2017年 | 10篇 |
2016年 | 7篇 |
2015年 | 3篇 |
2014年 | 13篇 |
2013年 | 26篇 |
2012年 | 9篇 |
2011年 | 15篇 |
2010年 | 15篇 |
2009年 | 18篇 |
2008年 | 13篇 |
2007年 | 17篇 |
2006年 | 15篇 |
2005年 | 4篇 |
2004年 | 13篇 |
2003年 | 11篇 |
2002年 | 4篇 |
2001年 | 8篇 |
2000年 | 2篇 |
1999年 | 8篇 |
1998年 | 7篇 |
1997年 | 4篇 |
1996年 | 2篇 |
1995年 | 6篇 |
1994年 | 2篇 |
1992年 | 2篇 |
1991年 | 2篇 |
1990年 | 3篇 |
1987年 | 6篇 |
1986年 | 2篇 |
1985年 | 3篇 |
1984年 | 4篇 |
1983年 | 3篇 |
1982年 | 4篇 |
1981年 | 3篇 |
1980年 | 2篇 |
1979年 | 2篇 |
1977年 | 1篇 |
1975年 | 2篇 |
1973年 | 1篇 |
1972年 | 2篇 |
1971年 | 1篇 |
1970年 | 1篇 |
1969年 | 1篇 |
1968年 | 1篇 |
1967年 | 2篇 |
1966年 | 1篇 |
排序方式: 共有301条查询结果,搜索用时 15 毫秒
81.
82.
High frequency dissolved oxygen data were analyzed to calculate primary production, respiration and net ecosystem metabolism
(NEM) from 42 sites within 22 National Estuarine Research Reserves (NERR), 1995–2000. NERR sites are characterized by a variety
of dominant plant communities including phytoplankton, salt marsh, seagrass, macroalgae, freshwater macrophyte, and mangrove,
and are representative of the coastal bioregions of the United States. As expected from the wide diversity of sites, metabolic
rates were temporally and spatially variable with the highest production and respiration occurring during the summer in Southeastern
estuaries. Sites within different regions exhibited consistent seasonal trends in production, respiration, and NEM. Temperature
was the most important environmental factor explaining within-site variation in metabolic rates; nutrient concentrations were
the second most important factor. All but three of the 42 sites were heterotrophic (respiration was greater than production)
on an annual basis. Habitat adjacent to the monitoring site, estuarine area, and salinity explained 58% of the variation in
NEM. Open water sites or sites adjacent to mangroves or in marsh creeks were heterotrophic, while sites in or adjacent to
submerged aquatic vegetation (eelgrass or macroalgal beds) were either autotrophic or near balance. Estuarine area was also
a significant factor explaining variability in NEM; larger systems were closer to balance than smaller systems that trended
toward heterotrophy. Freshwater sites were more heterotrophic than saline sites. Nutrient loading explained 68% of the variation
in NEM among some of the sites. When these estimates were compared to the literature, metabolic rates from the NERR sites
were much larger, often two to five times greater than rates from other estuarine and coastal systems. One explanation is
that these small, generally shallow sites located near shore may have greater allochthonous organic inputs as well as significant
benthic primary production than the large, deeper systems represented by the literature. 相似文献
83.
Francis W.N. Nsubuga O.J. Botai Jane M. Olwoch C.J. deW Rautenbach Yvette Bevis Adebayo O. Adetunji 《水文科学杂志》2013,58(2):278-299
AbstractA study of rainfall trends and temporal variations within seven sub-basins of Uganda spanning from 1940 to 2009 has been made. Rainfall climatologies are constructed from observational data, using 36 station records which reflect hydroclimatic conditions. Long-term changes in rainfall characteristics were determined by non-parametric tests (Mann-Kendall and Sen’s T tests), coefficient of variation (CV), precipitation concentration index and drought severity index. Magnitude of change was estimated by applying Sen’s estimator of slope. Decadal variability of rainfall with marked seasonal cycles is evident. Temporal variability of drought patterns is detected. Variations in annual rainfall are low with no significant trends observed in the main drainage sub-basins. Significant trends occur in October, November, December and January. A noticeable decrease in the annual total rainfall was observed mostly in northwestern and southwestern sub-basins. Rainfall trend in the second normal of June–July–August (JJA) was decreasing in all the main drainage sub-basins.Editor Z.W. Kundzewicz; Associate editor S. YueCitation Nsubuga, F.W.N., Botai, O.J., Olwoch, J.M., Rautenbach, C.J.deW., Bevis, Y., and Adetunji, A.O., 2014. The nature of rainfall in the main drainage sub-basins of Uganda. Hydrological Sciences Journal, 59 (2), 278–299. 相似文献
84.
Stephen E. L. Howell Jane Assini Kathy L. Young Anna Abnizova Chris Derksen 《水文研究》2012,26(23):3477-3488
Snowmelt onset and end date estimates are made from QuikSCAT scatterometer measurements in the Canadian High Arctic wetland of Polar Bear Pass (PBP) and the surrounding region of Bathurst Island, Nunavut. In situ data within PBP is used to validate QuikSCAT snowmelt onset/end date estimates. Results indicate that within PBP from 2000 to 2009, the mean snowmelt onset date was Year Day (YD) 162, the mean snowmelt end date was YD179, and the mean snowmelt duration was 17 days. More interannual variability was apparent in snowmelt end date and duration compared with onset, and only snowmelt end date was significantly correlated with mean June air temperature at ?0.78. Cooler air temperatures in 2004 contributed to a long snowmelt duration of 24 days, and the very short snowmelt duration in 2007 of just 11 days was caused by rapid and sustained increases in air temperature. For snowmelt end date and duration the mean spatial pattern revealed two centres of later snowmelt end date/longer snowmelt duration over Bathurst Island. They were separated by early snowmelt end date/short snowmelt duration in PBP. These patterns are in agreement with the spatial distribution of mean May to July air temperature over Bathurst Island and are likely influenced by the local‐scale topography of Bathurst Island. Given the correlation between air temperature and snowmelt end date, we might expect quicker snowmelt under increased warming. The latter process may have implications for the sustainability of the PBP wetland under a warmer climate. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
85.
To gain insight into the importance of the benthos in carbon and nutrient budgets of Boston Harbor and surrounding bays, we measured sediment-water exchanges of oxygen, total carbon dioxide (DIC), nitrogen (ammonium, nitrate+nitrite, urea, N2O), silicate, and phosphorus at several stations in different sedimentary environments just prior to and subsequent to cessation of sewage sludge disposal in the harbor. The ratio of the average annual DIC release to O2 uptake at three primary stations ranged from 0.84 to 1.99. Annual average DIC:DIN flux ratios were consistently greater than predicted from the Redfield ratio, suggesting substantial losses of mineralized N. The pattern was less clear for P: some stations showed evidence that the sediments were a sink for P while others appeared to be a net source to the water column over the study period. In general, temporal and spatial patterns of respiration, nutrient fluxes, and flux ratios were not consistently related to measures of sediment oxidation-reduction status such as Eh or dissolved sulfide. Sediments from Boston Harbor metabolize a relatively high percentage (46%) of the organic matter inputs from phytoplankton production and allochthonous inputs when compared to most estuarine systems. Nutrient regeneration from the benthos is equivalent to 40% of the N, 29% of the P, and more than 60% of the Si demand of the phytoplankton. However, the role of the benthos in supporting primary production at the present time may be minor as nutrient inputs from sewage and other sources exceed benthic fluxes of N and P by 10-fold and Si by 4-fold. Our estimates of denitrification from DIC:DIN fluxes suggests that about 45% of the N mineralized in the sediments is denitrified, which accounts for about 17% of the N inputs from land. 相似文献
86.
Noble gas data are reported for 12 E-chondrites. Combined with literature data, they show that K-Ar ages are >4 Æ for 14 out of 18 meteorites, yet U, Th-He ages are often shorter, perhaps due to late, mild reheating. Cosmic-ray exposure ages differ systematically between types 4 and 6, with E4's mostly below 16 Myr and E6's above 30 Myr. This may mean that the E-chondrite parent body contains predominantly a single petrologic type on the (~ 1 km) scale of individual impacts, in contrast to the more thoroughly mixed parent bodies of the ordinary chondrites.The heavy noble gases consist of at least two primordial components: the usual planetary component () and a less fractionated, ‘subsolar’ component (). The latter is found in highest concentration in the E4 chondrite South Oman (36Ar = 760 × 10?8cc/g, ). The isotopic compositions of both components are similar to typical planetary values, indicating that some factor other than mass controlled the noble gas elemental ratios. The heavy Xe isotopes occasionally show some of the lowest and ratios measured in bulk chondrites, suggestive of nearly fission-free Xe (e.g. ). Amounts of planetary gas in E4 E6 chondrites fall in the range for ordinary chondrites of types 4–6, but, in contrast to the ordinary chondrites. fail to correlate with petrologic type or volatile trace element contents. Another unusual feature of E-chondrites is that primordial Ne is present even in most 4's and 5's (20Nep ~ 1 to 7 × 10?8cc/g). with an isotopic composition consistent with planetary Ne.Analyses of mineral separates show that the planetary gases are concentrated in an HF- and HCl-insoluble mineral similar to phase Q, the poorly characterized, HNO3-soluble carrier of primordial gases in carbonaceous and ordinary chondrites. The subsolar gases, on the other hand, are located in an HCl- and HNO3-resistant phase, possibly enstatite or a minor phase included in enstatite. Much of the 129Xer (50% for E4's, > 70% for E6's) is in HCl-resistant but HF-soluble sites, suggestive of a silicate.A similar subsolar component may be responsible for the high ratios of some C3's, unequilibrated ordinary chondrites, and the unique aubrite Shallowater. The planet Venus also has a high ratio, well above the planetary range, and hence may have acquired its noble gases from an E-chondrite-like material, similar to South Oman. 相似文献
87.
88.
This study investigates the variations in erosional processes beneath Briksdalsbreen; a Norwegian valley glacier, with a thin coarse grained deforming bed. The subglacial zone was investigated in situ, close to the central glacial flow line (Site A) and close to the valley wall (Site B), via boreholes. The till was collected using two different sediment samplers and the bed was examined using a borehole video camera. In order to evaluate how representative borehole sampling was of the subglacial environment, the results from in situ subglacial samples were compared with random samples taken from an exposed subglacial surface in the glacier foreland, as well as a sample taken from the site after glacier retreat. The results indicated that the texture of the exposed subglacial surface was similar to in situ samples from subglacial Site B (close to the valley wall), and that the samples collected with the ‘small’ sediment sampler had the closest fit. SEM analysis revealed eroded quartz grains at both sites as a result of rotation (abrasion) and fracture. The samples from close to the valley wall were very poorly sorted, with evidence for rounding and preservation of pre-weathered surfaces, which suggest that a relatively simple pattern of erosion from crushing to rotation dominated. However, the till from the centre of the glacier was better sorted, more angular, and with few pre-weathered surfaces. We suggest that this results from a more complex glacial erosional history associated with greater strain and longer residence time within the deforming layer. When compared with other deformation tills, it was confirmed that there is a relationship between grain size and erosional style. Clay-rich tills show little comminution, fine sand-rich tills generate a significant silt component, whilst the coarse sand-rich tills at Briksdalsbreen showed complex deformational styles but no significant silt component. 相似文献
89.
An analytical approach to the analysis of zoning profiles in minerals is presented that simultaneously accounts for all of the possible continuous reactions that may be operative in a given assemblage. The method involves deriving a system of simultaneous linear differential equations consisting of a Gibbs-Duhem equation for each phase, a set of linearly independent stoichiometric relations among the chemical potentials of phase components in the assemblage, and a set of equations describing the total differential of the slope of the tangent plane to the Gibbs free energy surface of solid solution phases. The variables are the differentials of T, P, chemical potentials of all phase components, and independent compositional terms of solid solution phases. The required input data are entropies, volumes, the compositions of coexisting phases at a reference P and T, and an expression for the curvature of the Gibbs functions for solid solution phases. Results derived are slopes of isopleths (dP/dT, dX/dT or dX/dP) which can be used to contour P-T diagrams with mineral composition.To interpret mineral zoning, T and P can be expressed as functions of n independent composition parameters, where n is the variance of the mineral assemblage. The total differentials of P and T are differential equations that can be solved by finite difference techniques using the derivatives obtained from the analytical formulation of phase equilibria.Results calculated from Zone I and Zone IV garnets of Tracy et al. (1976) indicate that Zone I garnets grew while T increased (T+72° C) and P decreased sharply (P–3 kb). Zone IV garnets zoned in response to decreasing T (T–17° C) and P (P–1 kb). A P-T path calculated for a zoned garnet from the Greinerschiefer series, western Tauern Window, Austria, also indicates growth during decompression (–3kb) and heating (T+15° C). A P-T path calculated for the Wissahickon schist (Crawford and Mark 1982) indicates growth during cooling and compression (T–25 C, P+2.2 kb). The calculated P-T paths differ according to structural environment and can be used to relate mineral growth to tectonic processes. 相似文献
90.
Jane R. Frankenberger Erin S. Brooks M. Todd Walter Michael F. Walter Tammo S. Steenhuis 《水文研究》1999,13(6):805-822
Effective control of nonpoint source pollution from contaminants transported by runoff requires information about the source areas of surface runoff. Variable source hydrology is widely recognized by hydrologists, yet few methods exist for identifying the saturated areas that generate most runoff in humid regions. The Soil Moisture Routing model is a daily water balance model that simulates the hydrology for watersheds with shallow sloping soils. The model combines elevation, soil, and land use data within the geographic information system GRASS, and predicts the spatial distribution of soil moisture, evapotranspiration, saturation‐excess overland flow (i.e., surface runoff), and interflow throughout a watershed. The model was applied to a 170 hectare watershed in the Catskills region of New York State and observed stream flow hydrographs and soil moisture measurements were compared to model predictions. Stream flow prediction during non‐winter periods generally agreed with measured flow resulting in an average r2 of 0·73, a standard error of 0·01 m3/s, and an average Nash‐Sutcliffe efficiency R2 of 0·62. Soil moisture predictions showed trends similar to observations with errors on the order of the standard error of measurements. The model results were most accurate for non‐winter conditions. The model is currently used for making management decisions for reducing non‐point source pollution from manure spread fields in the Catskill watersheds which supply New York City's drinking water. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献