首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3653篇
  免费   144篇
  国内免费   73篇
测绘学   142篇
大气科学   279篇
地球物理   1065篇
地质学   1266篇
海洋学   270篇
天文学   548篇
综合类   22篇
自然地理   278篇
  2023年   18篇
  2022年   22篇
  2021年   63篇
  2020年   89篇
  2019年   73篇
  2018年   141篇
  2017年   118篇
  2016年   156篇
  2015年   144篇
  2014年   146篇
  2013年   226篇
  2012年   155篇
  2011年   214篇
  2010年   178篇
  2009年   212篇
  2008年   187篇
  2007年   161篇
  2006年   142篇
  2005年   104篇
  2004年   105篇
  2003年   100篇
  2002年   78篇
  2001年   84篇
  2000年   75篇
  1999年   70篇
  1998年   51篇
  1997年   52篇
  1996年   41篇
  1995年   30篇
  1994年   29篇
  1993年   23篇
  1992年   33篇
  1991年   17篇
  1990年   27篇
  1989年   22篇
  1988年   25篇
  1987年   19篇
  1986年   30篇
  1985年   35篇
  1984年   25篇
  1983年   35篇
  1982年   26篇
  1981年   25篇
  1980年   22篇
  1979年   26篇
  1978年   20篇
  1977年   19篇
  1976年   18篇
  1975年   20篇
  1973年   17篇
排序方式: 共有3870条查询结果,搜索用时 0 毫秒
81.
Results from numerical simulations of jetstreams are used to discuss certain aspects of the dynamics of the rings of Saturn. The probable velocity distribution inside the ring system is strongly non-Maxwellian. For the rings to form and remain a minimal degree of inelasticity is required. The energy consumption decreases rapidly with decreasing thickness of the rings. As we expect the degree of inelasticity to decrease for very small impact velocities, a minimal thickness should be reached, somewhat lower than the observed value.  相似文献   
82.
We investigate the gravitational fragmentation of expanding shells in the context of the linear thin-shell analysis. We make use of two very different numerical schemes; the flash adaptive mesh refinement code and a version of the Benz smoothed particle hydrodynamics code. We find that the agreement between the two codes is excellent. We use our numerical results to test the thin-shell approximation and we find that the external pressure applied to the shell has a strong effect on the fragmentation process. In cases where shells are not pressure-confined, the shells thicken as they expand and hydrodynamic flows perpendicular to the plane of the shell suppress fragmentation at short wavelengths. If the shells are pressure-confined internally and externally, so that their thickness remains approximately constant during their expansion, the agreement with the analytical solution is better.  相似文献   
83.
84.
The origin of Mercury's anomalous core and low FeO surface mineralogy are outstanding questions in planetary science. Mercury's composition may result from cosmochemical controls on the precursor solids that accreted to form Mercury. High temperatures and enrichment in solid condensates are likely conditions near the midplane of the inner solar protoplanetary disk. Silicate liquids similar to the liquids quenched in ferromagnesian chondrules are thermodynamically stable in oxygen-rich systems that are highly enriched in dust of CI-chondrite composition. In contrast, the solids surviving into the orbit of Mercury's accretion zone were probably similar to highly unequilibrated, anhydrous, interstellar organic- and presolar grain-bearing chondritic, porous interplanetary dust particles (C-IDPs). Chemical systems enriched in an assumed C-IDP composition dust produce condensates (solid+liquid assemblages in equilibrium with vapor) with super-chondritic atomic Fe/Si ratios at high temperatures, approaching 50% of that estimated for bulk Mercury. Sulfur behaves as a refractory element, but at lower temperatures, in these chemical systems. Stable minerals are FeO-poor, and include CaS and MgS, species found in enstatite chondrites. Disk gradients in volatile compositions of planetary and asteroidal precursors can explain Mercury's anomalous composition, as well as enstatite chondrite and aubrite parent body compositions. This model predicts high sulfur content, and very low FeO content of Mercury's surface rocks.  相似文献   
85.
86.
Gary  G. Allen  Alexander  David 《Solar physics》1999,186(1-2):123-139
A method is presented for constructing the coronal magnetic field from photospheric magnetograms and observed coronal loops. A set of magnetic field lines generated from magnetogram data is parameterized and then deformed by varying the parameterized values. The coronal flux tubes associated with this field are adjusted until the correlation between the field lines and the observed coronal loops is maximized. A mathematical formulation is described which ensures that (i) the normal component of the photospheric field remains unchanged, (ii) the field is given in the entire corona over an active region, (iii) the field remains divergence-free, and (iv) electric currents are introduced into the field. It is demonstrated that a parameterization of a potential field, comprising a radial stretching of the field, can provide a match for a simple bipolar active region, AR 7999, which crossed the central meridian on 1996 November 26. The result is a non-force-free magnetic field with the Lorentz force being of the order of 10–5.5 g cm s–2 resulting from an electric current density of 0.079 A m–2. Calculations show that the plasma beta becomes larger than unity at a relatively low height of 0.25 r supporting the non-force-free conclusion. The presence of such strong non-radial currents requires large transverse pressure gradients to maintain a magnetostatic atmosphere, required by the relatively persistent nature of the coronal structures observed in AR 7999. This scheme is an important tool in generating a magnetic field solution consistent with the coronal flux tube observations and the observed photospheric magnetic field.  相似文献   
87.
88.
We perform a stability test of triaxial models in Modified Newtonian Dynamics (MOND) using N -body simulations. The triaxial models considered here have densities that vary with   r −1  in the centre and   r −4  at large radii. The total mass of the model varies from 108 to  1010 M  , representing the mass scale of dwarfs to medium-mass elliptical galaxies, respectively, from deep MOND to quasi-Newtonian gravity. We build triaxial galaxy models using the Schwarzschild technique, and evolve the systems for 200 Keplerian dynamical times (at the typical length-scale of 1.0 kpc). We find that the systems are virial overheating, and in quasi-equilibrium with the relaxation taking approximately 5 Keplerian dynamical times (1.0 kpc). For all systems, the change of the inertial (kinetic) energy is less than 10 per cent (20 per cent) after relaxation. However, the central profile of the model is flattened during the relaxation and the (overall) axis ratios change by roughly 10 per cent within 200 Keplerian dynamical times (at 1.0 kpc) in our simulations. We further find that the systems are stable once they reach the equilibrium state.  相似文献   
89.
The relation between molecular clouds, star clusters, and the stellar component of the galactic disk is investigated. According to Elmegreen (1985) bound stellar systems, e.g., open star clusters, can be formed from molecular cloud of mass 104 M . A close encounter with a giant molecular cloud or massive black hole disrupts such stellar systems and forms superclusters. This explains why some open star clusters are so mass-deficient. Unbound stellar systems, e.g., expanding OB associations, are formed from molecular clouds of mass 105 M . When disruptive O-type stars appear the star formation is halted and the cloud is destroyed. An example of the relict of GMC disruption in the solar vicinity is Gould's belt. The velocity dispersion-versus-age relation is also investigated and explained as a consequence of gravitational scattering of stars on GMC, or massive black holes, or as due to recurrent transient spirals.Paper presented at a Workshop on The Role of Dust in Dense Regions of Interstellar Matter, held at Georgenthal, G.D.R., in March 1986.  相似文献   
90.
High energy particles, with energies above those attainable by adiabatic or steady-state electric field acceleration, have been observed in and around the outer regions of planetary magnetospheres. Acceleration by large amplitude sporadic cross-tail electric fields over an order of magnitude greater than steady-state convection fields is proposed as a source of these particles. It is suggested that such explosive electric fields will occur intermittently in the vicinity of the tail neutral line in the expansive phases of substorms. We use laboratory Double Inverse Pinch Device (DIPD) and satellite evidence to estimate this electric potential for substorms at Earth; values of 500 kV to 2 MV are calculated, in agreement with particle observations. It is further suggested that these particles, which have been accelerated in the night side magnetosphere, drift to the dayside on closed field lines, and under certain interplanetary conditions can escape to regions upstream of the bow shock.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号